A phase field model for mass transport with semi-permeable interfaces
Date
2022-09-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Attention Stats
Abstract
In this paper, a thermaldynamical consistent model for mass transfer across permeable moving interfaces is proposed by using the energy variation method. We consider a restricted diffusion problem where the flux across the interface depends on its conductance and the difference of the concentration on each side. The diffusive interface phase-field framework used here has several advantages over the sharp interface method. First of all, explicit tracking of the interface is no longer necessary. Secondly, interfacial conditions can be incorporated with a variable diffusion coefficient. Finally, topological changes of interfaces can be handed easily. A detailed asymptotic analysis confirms the diffusive interface model converges to the existing sharp interface model as the interface thickness goes to zero. An energy stable numerical scheme is developed to solve this highly nonlinear coupled system.Numerical simulations first illustrate the consistency of theoretical results on the sharp interface limit. Then a convergence study and energy decay test are conducted to ensure the efficiency and stability of the numerical scheme. To illustrate the effectiveness of our phase-field approach, several examples are provided, including a study of a two-phase mass transfer problem where droplets with deformable interfaces are suspended in a moving fluid.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Qin, Y, H Huang, Y Zhu, C Liu and S Xu (2022). A phase field model for mass transport with semi-permeable interfaces. Journal of Computational Physics, 464. pp. 111334–111334. 10.1016/j.jcp.2022.111334 Retrieved from https://hdl.handle.net/10161/27443.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Shixin Xu
Shixin Xu is an Assistant Professor of Mathematics whose research spans several dynamic and interconnected fields. His primary interests include machine learning and data-driven models for disease prediction, multiscale modeling of complex fluids, neurovascular coupling, homogenization theory, and numerical analysis. His current projects reflect a diverse and impactful portfolio:
- Developing predictive models based on image data to identify hemorrhagic transformation in acute ischemic stroke.
- Conducting electrodynamics modeling of saltatory conduction along myelinated axons to understand nerve impulse transmission.
- Engaging in electrochemical modeling to explore the interactions between electric fields and chemical processes.
- Investigating fluid-structure interactions with mass transport and reactions, crucial for understanding physiological and engineering systems.
These projects demonstrate his commitment to addressing complex problems through interdisciplinary approaches that bridge mathematics with biological and physical sciences.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.