Periostin facilitates ovarian cancer recurrence by enhancing cancer stemness.

Abstract

The lethality of epithelial ovarian cancer (OC) is largely due to a high rate of recurrence and development of chemoresistance, which requires synergy between cancer cells and the tumor microenvironment (TME) and is thought to involve cancer stem cells. Our analysis of gene expression microarray data from paired primary and recurrent OC tissues revealed significantly elevated expression of the gene encoding periostin (POSTN) in recurrent OC compared to matched primary tumors (p = 0.015). Secreted POSTN plays a role in the extracellular matrix, facilitating epithelial cell migration and tissue regeneration. We therefore examined how elevated extracellular POSTN, as we found is present in recurrent OC, impacts OC cell functions and phenotypes, including stemness. OC cells cultured with conditioned media with high levels of periostin (CMPOSTNhigh) exhibited faster migration (p = 0.0044), enhanced invasiveness (p = 0.006), increased chemoresistance (p < 0.05), and decreased apoptosis as compared to the same cells cultured with control medium (CMCTL). Further, CMPOSTNhigh-cultured OC cells exhibited an elevated stem cell side population (p = 0.027) along with increased expression of cancer stem cell marker CD133 relative to CMCTL-cultured cells. POSTN-transfected 3T3-L1 cells that were used to generate CMPOSTNhigh had visibly enhanced intracellular and extracellular lipids, which was also linked to increased OC cell expression of fatty acid synthetase (FASN) that functions as a central regulator of lipid metabolism and plays a critical role in the growth and survival of tumors. Additionally, POSTN functions in the TME were linked to AKT pathway activities. The mean tumor volume in mice injected with CMPOSTNhigh-cultured OC cells was larger than that in mice injected with CMCTL-cultured OC cells (p = 0.0023). Taken together, these results show that elevated POSTN in the extracellular environment leads to more aggressive OC cell behavior and an increase in cancer stemness, suggesting that increased levels of stromal POSTN during OC recurrence contribute to more rapid disease progression and may be a novel therapeutic target. Furthermore, they also demonstrate the utility of having matched primary-recurrent OC tissues for analysis and support the need for better understanding of the molecular changes that occur with OC recurrence to develop ways to undermine those processes.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1038/s41598-023-48485-8

Publication Info

Huang, Zhiqing, Olivia Byrd, Sarah Tan, Katrina Hu, Bailey Knight, Gaomong Lo, Lila Taylor, Yuan Wu, et al. (2023). Periostin facilitates ovarian cancer recurrence by enhancing cancer stemness. Scientific reports, 13(1). p. 21382. 10.1038/s41598-023-48485-8 Retrieved from https://hdl.handle.net/10161/30109.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Huang

Zhiqing Huang

Assistant Professor in Obstetrics and Gynecology

Dr. Huang is an Assistant Professor in the Department of Obstetrics and Gynecology, Division of Reproductive Sciences, at Duke University Medical Center. She obtained her MD at North China Coal Medical University in China and her PhD at the University of Heidelberg in Germany under the mentorship of Dr. Ralph Witzgall. She did her postdoctoral training with Dr. Jiemin Wong at Baylor College of Medicine, studying how histone methylation and chromatin modifications regulate androgen receptor transcription. 

Dr. Huang’s research includes the following:

•The factors in the tumor microenvironment contribute to ovarian cancer progress;
•New drug development for recurrent ovarian cancer treatment;
•The early DNA methylation profiles contribute to cancer development in late life;
•The special changes in the tumor microenvironment;
•Epigenetics and epigenomics.
*The impact of lipid metabolism in the tumor microenvironment in cancer progression and treatment.
*Impact of ferroptosis in endometriosis development. 

Dr. Huang has received an R03 funding titled “Role of Age-Related Changes in the Tumor Microenvironment on Ovarian Cancer Progression” from NIA at NIH for 2021-2023.
Dr. Huang received Charles B. Hammond's Research Fund from the Department of Obstetrics and Gynecology at Duke University in November 2022, for a project titled "Single Cell Spatial Transcriptomics in Highly Aggressive and Less Aggressive Ovarian Cancer".
Dr. Huang has received Duke Cancer Institute 2023 spring pilot study award for07012023-06302024, the project title is "Age Effects on Chemotherapy Targeting Cells Causing Ovarian Cancer Recurrence”.
Dr. Huang has received the American Cancer Society -Duke Cancer Institute (ASC-DCI) 2024 spring pilot study award for 07012024-06302025. The project title is "Early Establishment of Epigenetic Profiles that Increase Cancer Risk in Late Life”.
Dr. Huang received Charles B. Hammond's Research Fund from the Department of Obstetrics and Gynecology at Duke University in November 2023 for 01012024-12312024. The project's title is "Age Effects on Chemotherapy Targeting Cells Causing Ovarian Cancer Recurrence".

Wu

Yuan Wu

Associate Professor in Biostatistics & Bioinformatics

Survival analysis, Sequential clinical trial design, Machine learning, Causal inference, Non/Semi-parametric method, Statistical computing

Murphy

Susan Kay Murphy

Associate Professor in Obstetrics and Gynecology

Dr. Murphy is a tenured Associate Professor in the Department of Obstetrics and Gynecology and serves as Chief of the Division of Reproductive Sciences. As a molecular biologist with training in human epigenetics, her research interests are largely centered around the role of epigenetic modifications in health and disease. 

Dr. Murphy has ongoing projects on gynecologic malignancies, including approaches to eradicate ovarian cancer cells that survive chemotherapy and later give rise to recurrent disease. Dr. Murphy is actively involved in many collaborative projects relating to the Developmental Origins of Health and Disease (DOHaD).

Her lab is currently working on preconception environmental exposures in males, particularly on the impact of cannabis on the sperm epigenome and the potential heritability of these effects. They are also studying the epigenetic and health effects of in utero exposures, with primary focus on children from the Newborn Epigenetics STudy (NEST), a pregnancy cohort she co-founded who were recruited from central North Carolina between 2005 and 2011. Dr. Murphy and her colleagues continue to follow NEST children to determine relationships between prenatal exposures and later health outcomes.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.