Dynamic predictions in Bayesian functional joint models for longitudinal and time-to-event data: an application to Alzheimer’s disease

dc.contributor.author

Li, K

dc.contributor.author

Luo, S

dc.date.accessioned

2017-09-07T21:59:55Z

dc.date.available

2017-09-07T21:59:55Z

dc.date.issued

2017

dc.identifier.uri

https://hdl.handle.net/10161/15468

dc.relation.ispartof

Statistical Methods in Medical Research

dc.title

Dynamic predictions in Bayesian functional joint models for longitudinal and time-to-event data: an application to Alzheimer’s disease

dc.type

Journal article

duke.contributor.orcid

Luo, S|0000-0003-4214-5809

pubs.organisational-group

Basic Science Departments

pubs.organisational-group

Biostatistics & Bioinformatics

pubs.organisational-group

Duke

pubs.organisational-group

Duke Clinical Research Institute

pubs.organisational-group

Institutes and Centers

pubs.organisational-group

School of Medicine

pubs.volume

OnlineFirst

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2017Li_Luo2017SMMR.pdf
Size:
891.08 KB
Format:
Adobe Portable Document Format
Description:
Published version
Loading...
Thumbnail Image
Name:
2017Li_Luo2017SMMR_supplement.pdf
Size:
242.53 KB
Format:
Adobe Portable Document Format
Description:
Supporting information