Maternal vitamin D deficiency and developmental origins of health and disease (DOHaD).

Abstract

Vitamin D is an essential nutrient that is metabolized in the body to generate an active metabolite (1,25(OH)2D) with hormone-like activity and highly diverse roles in cellular function. Vitamin D deficiency (VDD) is a prevalent but easily preventable nutritional disturbance. Emerging evidence demonstrates the importance of sufficient vitamin D concentrations during fetal life with deficiencies leading to long-term effects into adulthood. Here, we provide a detailed review and perspective of evidence for the role of maternal VDD in offspring long term health, particularly as it relates to Developmental Origins of Health and Disease (DOHaD). We focus on roles in neurobehavioral and cardiometabolic disorders in humans and highlight recent findings from zebrafish and rodent models that probe potential mechanisms linking early life VDD to later life health outcomes. Moreover, we explore evidence implicating epigenetic mechanisms as a mediator of this link. Gaps in our current understanding of how maternal VDD might result in deleterious offspring outcomes later in life are also addressed.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1530/joe-18-0541

Publication Info

Ideraabdullah, Folami Y, Anthony M Belenchia, Cheryl Susan Rosenfeld, Seth W Kullman, Megan Knuth, Debrata Mahapatra, Michael Bereman, Edward D Levin, et al. (2019). Maternal vitamin D deficiency and developmental origins of health and disease (DOHaD). The Journal of endocrinology, 241(2). p. JOE-18-0541.R2. 10.1530/joe-18-0541 Retrieved from https://hdl.handle.net/10161/29514.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Levin

Edward Daniel Levin

Professor in Psychiatry and Behavioral Sciences

Dr. Levin is Chief of the Neurobehavioral Research Lab in the Psychiatry Department of Duke University Medical Center. His primary academic appointment is as Professor in the Department of Psychiatry and Behavioral Sciences. He also has secondary appointments in the Department Pharmacology and Cancer Biology, the Department of Psychological and Brain Sciences and the Nicholas School of the Environment at Duke. His primary research effort is to understand basic neural interactions underlying cognitive function and addiction and to apply this knowledge to better understand cognitive dysfunction and addiction disorders and to develop novel therapeutic treatments.

The three main research components of his laboratory are focused on the themes of the basic neurobiology of cognition and addiction, neurobehavioral toxicology and the development of novel therapeutic treatments for cognitive dysfunction and substance abuse. Currently, our principal research focus concerns nicotine. We have documented the basic effects of nicotine on learning memory and attention as well as nicotine self-administration. We are continuing with more mechanistic studies in rat models using selective lesions, local infusions and neurotransmitter interaction studies. We have found that nicotine improves memory performance not only in normal rats, but also in rats with lesions of hippocampal and basal forebrain connections. We are concentrating on alpha7 and alpha4beta2 nicotinic receptor subtypes in the hippocampus, amygdala , thalamus and frontal cortex and how they interact with dopamine D1 and D2 and glutamate NMDA systems with regard to memory and addiction. I am also conducting studies on human cognitive behavior. We have current studies to assess nicotine effects on attention, memory and mental processing speed in schizophrenia, Alzheimer's Disease and Attention Deficit Hyperactivity Disorder. In the area of neurobehavioral toxicology, I have continuing projects to characterize the adverse effects of prenatal and adolescent nicotine exposure. Our primary project in neurobehavioral toxicology focuses on the cognitive deficits caused by the marine toxins. The basic and applied aims of our research complement each other nicely. The findings concerning neural mechanisms underlying cognitive function help direct the behavioral toxicology and therapeutic development studies, while the applied studies provide important functional information concerning the importance of the basic mechanisms under investigation.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.