Continuing versus suspending angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: Impact on adverse outcomes in hospitalized patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)--The BRACE CORONA Trial.

Abstract

Angiotensin-converting enzyme-2 (ACE2) expression may increase due to upregulation in patients using angiotensin-converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARBs). Because renin-angiotensin system blockers increase levels of ACE2, a protein that facilitates coronavirus entry into cells, there is concern that these drugs could increase the risk of developing a severe and fatal form of COVID-19. The impact of discontinuing ACEI and ARBs in patients with COVID-19 remains uncertain. DESIGN: BRACE CORONA is a pragmatic, multicenter, randomized, phase IV, clinical trial that aims to enroll around 500 participants at 34 sites in Brazil. Participants will be identified from an ongoing national registry of suspected and confirmed cases of COVID-19. Eligible patients using renin-angiotensin system blockers (ACEI/ARBs) with a confirmed diagnosis of COVID-19 will be randomized to a strategy of continued ACEI/ARB treatment versus temporary discontinuation for 30 days. The primary outcome is the median days alive and out of the hospital at 30 days. Secondary outcomes include progression of COVID-19 disease, all-cause mortality, death from cardiovascular causes, myocardial infarction, stroke, transient ischemic attack, new or worsening heart failure, myocarditis, pericarditis, arrhythmias, thromboembolic events, hypertensive crisis, respiratory failure, hemodynamic decompensation, sepsis, renal failure, and troponin, B-type natriuretic peptide (BNP), N-terminal-proBNP, and D-dimer levels. SUMMARY: BRACE CORONA will evaluate whether the strategy of continued ACEI/ARB therapy compared with temporary discontinuation of these drugs impacts clinical outcomes among patients with COVID-19.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.ahj.2020.05.002

Publication Info

Lopes, Renato D, Ariane Vieira Scarlatelli Macedo, Pedro Gabriel Melo de Barros E Silva, Renata Junqueira Moll-Bernardes, Andre Feldman, Guilherme D'Andréa Saba Arruda, Andrea Silvestre de Souza, Denilson Campos de Albuquerque, et al. (2020). Continuing versus suspending angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: Impact on adverse outcomes in hospitalized patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)--The BRACE CORONA Trial. American heart journal, 226. pp. 49–59. 10.1016/j.ahj.2020.05.002 Retrieved from https://hdl.handle.net/10161/22867.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Granger

Christopher Bull Granger

Fred Cobb, M.D. Distinguished Professor of Medicine

Research:
My primary research interest is in conduct and methodology of large randomized clinical trials in heart disease. I have led a number of large international clinical studies in heart attacks, unstable angina, heart failure, and atrial fibrillation. I have lead clinical studies of blood thinners and coronary intervention for heart attacks, stroke prevention in atrial fibrillation, and prevention of heart attack for patients with coronary artery disease. I have been co-director of the Reperfusion of Acute MI in Carolina Emergency Departments (RACE) project that is a North Carolina state-wide program to improve reperfusion care for acute myocardial infarction. I serve as the Chairman of the American Heart Association Mission: Lifeline program to improve heart attack care nationally as well as the American College of Cardiology/American Heart Association guideline committee for heart attack care. I have also studied the effects of genetic variation on heart disease. I work with the National Institute of Health and the Federal Drug Administration on evaluation of heart disease and of new drugs. I have developed tools to predict which patients are at risk for death, heart attack, and need for hospitalization.

Alexander

John Hunter Peel Alexander

Professor of Medicine

John H. Alexander, MD, MHS is a cardiologist and Professor of Medicine in the Department of Medicine, Division of Cardiology at Duke University School of Medicine, as well as the Vice Chief, Clinical Research in the Division of Cardiology. He is the Director of Cardiovascular Research at the Duke Clinical Research Institute where he oversees a large group of clinical research faculty and a broad portfolio of cardiovascular clinical trials and observational clinical research programs. He is a member of the American Society of Clinical Investigation.

Dr. Alexander’s clinical interests are in acute and general cardiovascular disease, valvular heart disease, and echocardiology. His research is focused on the translation of novel therapeutic concepts into clinical data through clinical trials, specifically on the therapeutics of acute coronary syndromes, chronic coronary artery disease, and cardiac surgery and on novel methodological approaches to clinical trials. He was on the Executive Committee of the ARISTOTLE trial of apixaban in patients with atrial fibrillation and was the Principal Investigator of the APPRAISE-2 trial of apixaban in patients with acute coronary syndromes.

Dr. Alexander has published extensively and has served as the principal investigator of numerous multicenter clinical trials. He currently serves as the co-chair of the Clinical Trial Transformation Initiative (CTTI).


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.