Characterization of liver GSD IX γ2 pathophysiology in a novel Phkg2<sup>-/-</sup> mouse model.

Abstract

Introduction

Liver Glycogen Storage Disease IX is a rare metabolic disorder of glycogen metabolism caused by deficiency of the phosphorylase kinase enzyme (PhK). Variants in the PHKG2 gene, encoding the liver-specific catalytic γ2 subunit of PhK, are associated with a liver GSD IX subtype known as PHKG2 GSD IX or GSD IX γ2. There is emerging evidence that patients with GSD IX γ2 can develop severe and progressive liver disease, yet research regarding the disease has been minimal to date. Here we characterize the first mouse model of liver GSD IX γ2.

Methods

A Phkg2-/- mouse model was generated via targeted removal of the Phkg2 gene. Knockout (Phkg2-/-, KO) and wild type (Phkg2+/+, WT) mice up to 3 months of age were compared for morphology, Phkg2 transcription, PhK enzyme activity, glycogen content, histology, serum liver markers, and urinary glucose tetrasaccharide Glcα1-6Glcα1-4Glcα1-4Glc (Glc4).

Results

When compared to WT controls, KO mice demonstrated significantly decreased liver PhK enzyme activity, increased liver: body weight ratio, and increased glycogen in the liver, with no glycogen accumulation observed in the brain, quadricep, kidney, and heart. KO mice demonstrated elevated liver blood markers as well as elevated urine Glc4, a commonly used biomarker for glycogen storage disease. KO mice demonstrated features of liver structural damage. Hematoxylin & Eosin and Masson's Trichrome stained KO mice liver histology slides revealed characteristic GSD hepatocyte architectural changes and early liver fibrosis, as have been reported in liver GSD patients.

Discussion

This study provides the first evidence of a mouse model that recapitulates the liver-specific pathology of patients with GSD IX γ2. The model will provide the first platform for further study of disease progression in GSD IX γ2 as well as for the evaluation of novel therapeutics.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.ymgme.2021.05.008

Publication Info

Gibson, Rebecca A, Jeong-A Lim, Su Jin Choi, Leticia Flores, Lani Clinton, Deeksha Bali, Sarah Young, Aravind Asokan, et al. (2021). Characterization of liver GSD IX γ2 pathophysiology in a novel Phkg2-/- mouse model. Molecular genetics and metabolism, 133(3). pp. 269–276. 10.1016/j.ymgme.2021.05.008 Retrieved from https://hdl.handle.net/10161/27501.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Young

Sarah Phyllis Young

Professor of Pediatrics

As a clinical biochemical geneticist and a director of the Duke Biochemical Genetics laboratory, my research interests are focused on improving laboratory diagnostics for rare inherited disorders of metabolism. I am actively involved in the development of assays using mass spectrometry and other analytical techniques. My current research on biomarkers for lysosomal storage disorders, such as Fabry and Pompe disease and the mucopolysaccharidoses includes monitoring the response to novel therapies in patients. I also have an interest in neurometabolic disorders such as the creatine deficiency syndromes and sulfite oxidase and molybdenum cofactors. These disorders can be diagnosed using liquid chromatography-tandem mass spectrometric assays that measure biomarkers in urine. Guanidinoacetate methyltransferase deficiency is a disorder that can be detected in the newborn period and is amenable to dietary therapy, and is thus a good candidate for newborn screening.

Sun

Baodong Sun

Associate Professor in Pediatrics

My overall research interests are finding effective treatment for human glycogen storage diseases (GSDs) and other inherited metabolic disorders. My current research focuses on identification of novel therapeutic targets and development of effective therapies for GSD II (Pompe disease), GSD III (Cori disease), and GSD IV (Andersen disease) using cellular and animal disease models. The main therapeutic approaches we are using in our pre-clinical studies include protein/enzyme therapy, AAV-mediated gene therapy, and substrate reduction therapy with small molecule drugs.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.