On discrete Wigner transforms

dc.contributor.author

Cai, Zhenning

dc.contributor.author

Lu, Jianfeng

dc.contributor.author

Stubbs, Kevin

dc.date.accessioned

2018-12-19T14:07:05Z

dc.date.available

2018-12-19T14:07:05Z

dc.date.updated

2018-12-19T14:07:04Z

dc.description.abstract

In this work, we derive a discrete analog of the Wigner transform over the space $(\mathbb{C}^p)^{\otimes N}$ for any prime $p$ and any positive integer $N$. We show that the Wigner transform over this space can be constructed as the inverse Fourier transform of the standard Pauli matrices for $p=2$ or more generally of the Heisenberg-Weyl group elements for $p > 2$. We connect our work to a previous construction by Wootters of a discrete Wigner transform by showing that for all $p$, Wootters' construction corresponds to taking the inverse symplectic Fourier transform instead of the inverse Fourier transform. Finally, we discuss some implications of these results for the numerical simulation of many-body quantum spin systems.

dc.identifier.uri

https://hdl.handle.net/10161/17797

dc.subject

math-ph

dc.subject

math-ph

dc.subject

math.MP

dc.title

On discrete Wigner transforms

dc.type

Journal article

duke.contributor.orcid

Lu, Jianfeng|0000-0001-6255-5165

duke.contributor.orcid

Stubbs, Kevin|0000-0003-0062-5097

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Duke

pubs.organisational-group

Chemistry

pubs.organisational-group

Mathematics

pubs.organisational-group

Physics

pubs.organisational-group

Student

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1802.05834v2.pdf
Size:
211.81 KB
Format:
Adobe Portable Document Format