A solution of a problem of Sophus Lie: Normal forms of two-dimensional metrics admitting two projective vector fields

dc.contributor.author

Bryant, RL

dc.contributor.author

Manno, G

dc.contributor.author

Matveev, VS

dc.date.accessioned

2016-12-05T18:49:37Z

dc.date.issued

2008-02-01

dc.description.abstract

We give a complete list of normal forms for the two-dimensional metrics that admit a transitive Lie pseudogroup of geodesic-preserving transformations and we show that these normal forms are mutually non-isometric. This solves a problem posed by Sophus Lie. © 2007 Springer-Verlag.

dc.identifier.issn

0025-5831

dc.identifier.uri

https://hdl.handle.net/10161/13154

dc.publisher

Springer Science and Business Media LLC

dc.relation.ispartof

Mathematische Annalen

dc.relation.isversionof

10.1007/s00208-007-0158-3

dc.title

A solution of a problem of Sophus Lie: Normal forms of two-dimensional metrics admitting two projective vector fields

dc.type

Journal article

duke.contributor.orcid

Bryant, RL|0000-0002-4890-2471

pubs.begin-page

437

pubs.end-page

463

pubs.issue

2

pubs.organisational-group

Duke

pubs.organisational-group

Mathematics

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.publication-status

Published

pubs.volume

340

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0705.3592v2.pdf
Size:
409.97 KB
Format:
Adobe Portable Document Format