Age-related changes in the upper respiratory microbiome are associated with SARS-CoV-2 susceptibility and illness severity.
Date
2021-03-23
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Children are less susceptible to SARS-CoV-2 and typically have milder illness courses than adults. We studied the nasopharyngeal microbiomes of 274 children, adolescents, and young adults with SARS-CoV-2 exposure using 16S rRNA gene sequencing. We find that higher abundances of Corynebacterium species are associated with SARS-CoV-2 infection and SARS-CoV-2-associated respiratory symptoms, while higher abundances of Dolosigranulum pigrum are present in SARS-CoV-2-infected individuals without respiratory symptoms. We also demonstrate that the abundances of these bacteria are strongly, and independently, associated with age, suggesting that the nasopharyngeal microbiome may be a potentially modifiable mechanism by which age influences SARS-CoV-2 susceptibility and severity. SUMMARY: Evaluation of nasopharyngeal microbiome profiles in children, adolescents, and young adults with a SARS-CoV-2-infected close contact identified specific bacterial species that vary in abundance with age and are associated with SARS-CoV-2 susceptibility and the presence of SARS-CoV-2-associated respiratory symptoms.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Hurst, Jillian H, Alexander W McCumber, Jhoanna N Aquino, Javier Rodriguez, Sarah M Heston, Debra J Lugo, Alexandre T Rotta, Nicholas A Turner, et al. (2021). Age-related changes in the upper respiratory microbiome are associated with SARS-CoV-2 susceptibility and illness severity. medRxiv. 10.1101/2021.03.20.21252680 Retrieved from https://hdl.handle.net/10161/25651.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Jillian Hurst
Children's Health & Discovery Initiative:
The prenatal period, infancy, childhood, and adolescence, represent critical time periods of human development that include more developmental milestones than any other period of the lifespan. Conditions during these developmental windows – including biological, social, economic, health, and environmental factors – have a profound impact on lifelong health. The Children’s Health and Discovery Initiative (CHDI) was founded on the hypothesis that interventions early in life will improve population health across the lifespan. To this end, the overarching goal of the CHDI is to create a robust coalition of multidisciplinary investigators and a pipeline of infrastructure, data, and research projects focused on developing innovative approaches to identifying and modulating early life factors that impact lifelong health and well-being.
Intersections of the upper respiratory microbiome, environmental exposures, and childhood respiratory infections
Early life exposure to and colonization with microbes has a profound influence on the education of the immune system and susceptibility to viral and bacterial infections later in life. My research is focused on the influence of the upper respiratory microbiome on the development of recurrent respiratory infections, including acute otitis media (AOM), the leading cause of antibiotic prescriptions and healthcare consultations among children. Importantly, some children develop recurrent infections that are thought to be linked to dysbiosis of the nasopharyngeal microbiome. My overarching goals are to identify alterations in the upper respiratory microbiome associated with AOM and to elucidate host factors and exposures that predispose some children to the development of recurrent AOM episodes.
Sarah Mabrey Heston
I am a Pediatric Transplant Infectious Diseases physician-scientist. Clinically, I diagnose and treat infections in immunocompromised children who have either undergone transplantation or who are receiving chemotherapy. My research interests are in utilizing the microbiome to improve clinical outcomes following transplantation. Specifically, I am evaluating the gut microbiomes of children undergoing hematopoietic cell transplantation (HCT) to identify actionable interventions to reduce mucosal barrier injury bloodstream infections and graft-versus-host disease, two significant contributors to post-HCT morbidity.
Alexandre Tellechea Rotta
Michael Anthony Moody
Tony Moody, MD is a Professor in the Department of Pediatrics, Division of Infectious Diseases and Professor in the Department of Integrative Immunobiology at Duke University Medical Center. Research in the Moody lab is focused on understanding the B cell responses during infection, vaccination, and disease. The lab has become a resource for human phenotyping, flow characterization, staining and analysis at the Duke Human Vaccine Institute (DHVI). The Moody lab is currently funded to study influenza, syphilis, HIV-1, and emerging infectious diseases.
Dr. Moody is the director of the Duke CIVICs Vaccine Center (DCVC) at (DHVI) and co-director of the Centers for Research of Emerging Infectious Disease Coordinating Center (CREID-CC). Dr. Moody is mPI of a U01 program to develop a syphilis vaccine; this program is a collaboration with mPI Dr. Justin Radolf at the University of Connecticut. Dr. Moody is also the director of the DHVI Accessioning Unit, a biorepository that provides support for work occurring at DHVI and with its many collaborators around the world by providing processing, shipping, and inventory support for a wide array of projects.
Dr. Moody and his team are involved in many networks studying vaccine response including the Collaborative Influenza Vaccine Innovation Centers (CIVICs) and the COVID-19 Prevention Network (CoVPN).
Thomas Norton Denny
Thomas N. Denny, MSc, M.Phil, is the Chief Operating Officer of the Duke Human Vaccine Institute (DHVI), Associate Dean for Duke Research and Discovery @RTP, and a Professor of Medicine in the Department of Medicine at Duke University Medical Center. He is also an Affiliate Member of the Duke Global Health Institute. Previously, he served on the Health Sector Advisory Council of the Duke University Fuquay School of Business. Prior to joining Duke, he was an Associate Professor of Pathology, Laboratory Medicine and Pediatrics, Associate Professor of Preventive Medicine and Community Health and Assistant Dean for Research in Health Policy at the New Jersey Medical School, Newark, New Jersey. He has served on numerous committees for the NIH over the last two decades and currently is the principal investigator of an NIH portfolio in excess of 65 million dollars. Mr. Denny was a 2002-2003 Robert Wood Johnson Foundation Health Policy Fellow at the Institute of Medicine of the National Academies (IOM). As a fellow, he served on the US Senate Health, Education, Labor and Pensions Committee with legislation/policy responsibilities in global AIDS, bioterrorism, clinical trials/human subject protection and vaccine related-issues.
As the Chief Operating Officer of the DHVI, Mr. Denny has senior oversight of the DHVI research portfolio and the units/teams that support the DHVI mission. He has extensive international experience and previously was a consultant to the U.S. Centers for Disease Control and Prevention (CDC) for the President’s Emergency Plan for AIDS Relief (PEPFAR) project to oversee the development of an HIV and Public Health Center of Excellence laboratory network in Guyana. In September 2004, the IOM appointed him as a consultant to their Board on Global Health Committee studying the options for overseas placement of U.S. health professionals and the development of an assessment plan for activities related to the 2003 PEPFAR legislative act. In the 1980s, Mr. Denny helped establish a small laboratory in the Republic of Kalmykia (former Soviet Union) to improve the care of children with HIV/AIDS and served as a Board Member of the Children of Chernobyl Relief Fund Foundation. In 2005, Mr. Denny was named a consulting medical/scientific officer to the WHO Global AIDS Program in Geneva. He has also served as program reviewers for the governments of the Netherlands and South Africa as well as an advisor to several U.S. biotech companies. He currently serves as the Chair of the Scientific Advisory Board for Grid Biosciences.
Mr. Denny has authored and co-authored more than 200 peer-reviewed papers and serves on the editorial board of Communications in Cytometry and Journal of Clinical Virology. He holds an M.Sc in Molecular and Biomedical Immunology from the University of East London and a degree in Medical Law (M.Phil) from the Institute of Law and Ethics in Medicine, School of Law, University of Glasgow. In 1991, he completed a course of study in Strategic Management at The Wharton School, University of Pennsylvania. In 1993, he completed the Program for Advanced Training in Biomedical Research Management at Harvard School of Public Health. In December 2005, he was inducted as a Fellow into the College of Physicians of Philadelphia, the oldest medical society in the US.
While living in New Jersey, Mr. Denny was active in his community, gaining additional experience from two publicly elected positions. In 2000, Mr. Denny was selected by the New Jersey League of Municipalities to Chair the New Jersey Community Mental Health Citizens’ Advisory Board and Mental Health Planning Council as a gubernatorial appointment.
John F. Rawls
We seek to understand how the intestinal microbiome contributes to vertebrate physiology and disease. To that end, we leverage complementary zebrafish and mouse models to study the integrative physiology of host-microbiome interactions. This work has identified novel and conserved mechanisms by which intestinal bacteria regulate dietary fat metabolism and systemic innate immunity. We also apply genomic approaches in these animal models to understand the transcriptional regulatory pathways utilized by the intestinal epithelium to mediate host responses to the microbiome. Using this approach, we have identified mechanisms of transcriptional and chromatin regulation that have been conserved during vertebrate evolution and also contribute to modern human diseases such as the inflammatory bowel diseases, obesity, and diabetes. To further advance our understanding of obesity pathophysiology, we developed the zebrafish as a model system for studying adipose tissues and identifying new environmental and genetic regulators of adiposity. We are also engaged in translational research in humans and animal models to define microbial and metabolic determinants of obesity and efficacy of weight loss intervention. Grounded in comparative and integrative physiology, our research program has been effective in discovering ancient mechanisms of host-microbiome interaction that are conserved across animal taxa and contribute to the etiology of modern human diseases. These insights are advancing our understanding of host-microbiome relationships in vertebrate physiology and identifying novel therapeutic targets for human diseases ranging from inflammatory bowel disease to obesity to neurological disorders.
Matthew Kelly
My research is broadly focused on elucidating the complex interactions that exist between the host microbiome and exogenous pathogens that cause infections in children. We have several ongoing projects evaluating: 1) the impact of the upper respiratory microbiome on the risk of colonization and invasion by bacterial respiratory pathogens among infants in Botswana; 2) associations between the gut microbiome of pediatric stem cell transplant recipients and the risk of infections (bloodstream infection, C. difficile infection) and graft-versus-host disease; and 3) the role of the gut and respiratory microbiomes in mediating COVID-19 infection susceptibility and disease severity in children. Ultimately, I aim to develop strategies that use targeted modification of the microbiome for the prevention of infections in children.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.