Development and Validation of a Model for Predicting Surgical Site Infection After Pelvic Organ Prolapse Surgery.

Loading...
Thumbnail Image

Date

2022-10

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

10
views
32
downloads

Citation Stats

Abstract

Importance

Surgical site infection (SSI) is a common and costly complication. Targeted interventions in high-risk patients may lead to a reduction in SSI; at present, there is no method to consistently identify patients at increased risk of SSI.

Objective

The aim of this study was to develop and validate a model for predicting risk of SSI after pelvic organ prolapse surgery.

Study design

Women undergoing surgery between 2011 and 2017 were identified using Current Procedural Terminology codes from the Centers for Medicare and Medicaid Services 5% Limited Data Set. Surgical site infection ≤90 days of surgery was the primary outcome, with 41 candidate predictors identified, including demographics, comorbidities, and perioperative variables. Generalized linear regression was used to fit a full specified model, including all predictors and a reduced penalized model approximating the full model. Model performance was measured using the c-statistic, Brier score, and calibration curves. Accuracy measures were internally validated using bootstrapping to correct for bias and overfitting. Decision curves were used to determine the net benefit of using the model.

Results

Of 12,334 women, 4.7% experienced SSI. The approximated model included 10 predictors. Model accuracy was acceptable (bias-corrected c-statistic [95% confidence interval], 0.603 [0.578-0.624]; Brier score, 0.045). The model was moderately calibrated when predicting up to 5-6 times the average risk of SSI between 0 and 25-30%. There was a net benefit for clinical use when risk thresholds for intervention were between 3% and 12%.

Conclusions

This model provides estimates of probability of SSI within 90 days after pelvic organ prolapse surgery and demonstrates net benefit when considering prevention strategies to reduce SSI.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1097/spv.0000000000001222

Publication Info

Sheyn, David, W Thomas Gregory, Oyomoare Osazuwa-Peters and J Eric Jelovsek (2022). Development and Validation of a Model for Predicting Surgical Site Infection After Pelvic Organ Prolapse Surgery. Urogynecology (Hagerstown, Md.), 28(10). pp. 658–666. 10.1097/spv.0000000000001222 Retrieved from https://hdl.handle.net/10161/27475.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Jelovsek

John E Jelovsek

F. Bayard Carter Distinguished Professor of Obstetrics and Gynecology

Dr. Jelovsek is the F. Bayard Carter Distinguished Professor of OBGYN at Duke University and serves as Director of Data Science for Women’s Health. He is Board Certified in OBGYN by the American Board of OBGYN and in Female Pelvic Medicine & Reconstructive Surgery by the American Board of OBGYN and American Board of Urology. He has an active surgical practice in urogynecology based out of Duke Raleigh. He has expertise as a clinician-scientist in developing and evaluating clinical prediction models using traditional biostatistics and machine learning approaches. These “individualized” patient-centered prediction tools aim to improve decision-making regarding the prevention of lower urinary tract symptoms (LUTS) and other pelvic floor disorders after childbirth (PMID:29056536), de novo stress urinary incontinence and other patient-perceived outcomes after pelvic organ prolapse surgery, risk of transfusion during gynecologic surgery, and urinary outcomes after mid-urethral sling surgery (PMID: 26942362). He also has significant expertise in leading trans-disciplinary teams through NIH-funded multi-center research networks and international settings. As alternate-PI for the Cleveland Clinic site in the NICHD Pelvic Floor Disorders Network, he was principal investigator on the CAPABLe trial (PMID: 31320277), one of the largest multi-center trials for fecal incontinence studying anal exercises with biofeedback and loperamide for the treatment of fecal incontinence. He was the principal investigator of the E-OPTIMAL study (PMID: 29677302), describing the long-term follow up sacrospinous ligament fixation compared to uterosacral ligament suspension for apical vaginal prolapse. He was also primary author on research establishing the minimum important clinical difference for commonly used measures of fecal incontinence. Currently, he serves as co-PI in the NIDDK Symptoms of Lower Urinary Tract Dysfunction Research Network (LURN) (U01DK097780-05) where he has been involved in studies in the development of Symptoms of Lower Urinary Tract Dysfunction Research Network Symptom Index-29 (LURN SI-29) and LURN SI-10 questionnaires for men and women with LUTS. He is also the site-PI for the PREMIER trial (1R01HD105892): Patient-Centered Outcomes of Sacrocolpopexy versus Uterosacral Ligament Suspension for the Treatment of Uterovaginal Prolapse.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.