Vascular structures for volumetric cooling and mechanical strength

Loading...
Thumbnail Image

Date

2010-03-15

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

298
views
279
downloads

Citation Stats

Abstract

When solid material is removed in order to create flow channels in a load carrying structure, the strength of the structure decreases. On the other hand, a structure with channels is lighter and easier to transport as part of a vehicle. Here, we show that this trade off can be used for benefit, to design a vascular mechanical structure. When the total amount of solid is fixed and the sizes, shapes, and positions of the channels can vary, it is possible to morph the flow architecture such that it endows the mechanical structure with maximum strength. The result is a multifunctional structure that offers not only mechanical strength but also new capabilities necessary for volumetric functionalities such as self-healing and self-cooling. We illustrate the generation of such designs for strength and fluid flow for several classes of vasculatures: parallel channels, trees with one, two, and three bifurcation levels. The flow regime in every channel is laminar and fully developed. In each case, we found that it is possible to select not only the channel dimensions but also their positions such that the entire structure offers more strength and less flow resistance when the total volume (or weight) and the total channel volume are fixed. We show that the minimized peak stress is smaller when the channel volume (φ) is smaller and the vasculature is more complex, i.e., with more levels of bifurcation. Diminishing returns are reached in both directions, decreasing φ and increasing complexity. For example, when φ=0.02 the minimized peak stress of a design with one bifurcation level is only 0.2% greater than the peak stress in the optimized vascular design with two levels of bifurcation. © 2010 American Institute of Physics.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1063/1.3294697

Publication Info

Wang, KM, S Lorente and A Bejan (2010). Vascular structures for volumetric cooling and mechanical strength. Journal of Applied Physics, 107(4). p. 44901. 10.1063/1.3294697 Retrieved from https://hdl.handle.net/10161/3378.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Bejan

Adrian Bejan

J.A. Jones Distinguished Professor of Mechanical Engineering

Professor Bejan was awarded the Benjamin Franklin Medal 2018 and the Humboldt Research Award 2019. His research covers engineering science and applied physics: thermodynamics, heat transfer, convection, design, and evolution in nature.

He is ranked among the top 0.01% of the most cited and impactful world scientists (and top 10 in Engineering world wide) in the 2019 citations impact database created by Stanford University’s John Ioannidis, in PLoS Biology.  He is the author of 30 books and 700 peer-referred articles. His h-index is 111 with 92,000 citations on Google Scholar. He received 18 honorary doctorates from universities in 11 countries.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.