Effects of exercise amount and intensity versus a combined exercise and lifestyle intervention on metabolic syndrome in adults with prediabetes: a STRRIDE-PD randomized trial.

Abstract

The purpose of this secondary analysis was to determine what portion of the effects of a Diabetes Prevention Program-like intervention on metabolic syndrome (MetS) could be achieved with exercise alone, as well as to determine the relative importance of exercise intensity and amount to the total exercise effect on MetS. Sedentary, overweight adults with prediabetes were randomly assigned to one of four 6-month interventions: 1) low-amount/moderate-intensity (10 kcal/kg/week at 50% peak V˙O2); 2) high-amount/moderate-intensity (16 kcal/kg/week at 50% peak V˙O2); 3) high-amount/vigorous-intensity (16 kcal/kg/week at 75% peak V˙O2); or 4) diet (7% weight loss) plus low-amount/moderate-intensity (10 kcal/kg/week at 50% peak V˙O2). The primary outcome of this secondary analysis was change in the MetS z-score. A total of 130 participants had complete data for all five Adult Treatment Panel (ATP) III MetS criteria. The diet-and-exercise group statistically outperformed the MetS z-score and the ATP III score compared to the exercise alone group. Aerobic exercise alone achieved 24%-50% of the total effect of the combined diet-and-exercise intervention on the MetS score. Low-amount moderate-intensity exercise quantitatively performed equal to or better than the interventions of high-amount moderate-intensity or high-amount vigorous-intensity exercise in improving the MetS score. The combined diet-and-exercise intervention remains more efficacious in improving the MetS z-score. However, all three exercise interventions alone showed improvements in the MetS z-score, suggesting that a modest amount of moderate-intensity exercise is all that is required to achieve approximately half the effect of a diet-and-exercise intervention on the MetS. Clinical Trial Registration: clinicaltrials.gov, identifier NCT00962962.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.3389/fphys.2023.1199763

Publication Info

Bennett, William C, Katherine A Collins, Johanna L Johnson, Cris A Slentz, Leslie H Willis, Connie W Bales, Kim M Huffman, William E Kraus, et al. (2023). Effects of exercise amount and intensity versus a combined exercise and lifestyle intervention on metabolic syndrome in adults with prediabetes: a STRRIDE-PD randomized trial. Frontiers in physiology, 14. p. 1199763. 10.3389/fphys.2023.1199763 Retrieved from https://hdl.handle.net/10161/29676.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Collins

Katherine Collins

Medical Instructor in Population Health Sciences

Katherine A. Collins, PhD, NBC-HWC, is a Medical Instructor in the Department of Population Health Sciences and affiliated with the Duke Molecular Physiology Institute at Duke University School of Medicine, and is a board-certified health and wellness coach. She studies barriers and predictors of health-promoting behavior change. The ultimate goal of her translational research is to design trials to optimize health-promoting behaviors for those at risk for "relapse" or ceased behavioral modification, in order to improve long-term health and well-being.

Bales

Connie Watkins Bales

Professor in Medicine

Research in our laboratory focuses on the role of nutrition (particularly vitamins and minerals) in the prevention and management of chronic diseases in older adults. Previous studies have concerned trace elements and cardiovascular disease, calcium and osteoporosis, and renal synthesis of vitamin D as it relates to bone health. Some of our newest work emphasizes the role of micronutrients as antioxidants and their interaction with the aging process. We are also working on various aspects of energy balance in older adults, ranging from failure to thrive in stroke patients with dysphagia to exercise and nutrition effects in overweight subjects who begin physical training. Thus we have a number of clinical and epidemiological projects on-going, many of which include a strong emphasis on nutrition assessment techniques in middle-aged and elderly subjects.

Huffman

Kim Marie Huffman

Associate Professor of Medicine

Determining the role of physical activity in modulating health outcomes (cardiovascular disease risk) in persons with rheumatologic diseases (rheumatoid arthritis, gout, osteoarthritis)

Integrating clinical rheumatology, basic immunology, metabolism, and exercise science in order to reduce morbidity in individuals with arthritis

Evaluating relationships between circulating and intra-muscular metabolic intermediates and insulin resistance in sedentary as well as individuals engaging in regular exercise

Addressing the role of physical activity in modulating inflammation, metabolism, and functional health in aging populations

Kraus

William Erle Kraus

Richard and Pat Johnson University Distinguished Professor

My training, expertise and research interests range from human integrative physiology and genetics to animal exercise models to cell culture models of skeletal muscle adaptation to mechanical stretch. I am trained clinically as an internist and preventive cardiologist, with particular expertise in preventive cardiology and cardiac rehabilitation.  My research training spans molecular biology and cell culture, molecular genetics, and integrative human exercise physiology and metabolism. I practice as a preventive cardiologist with a focus on cardiometabolic risk and exercise physiology for older athletes.  My research space has both a basic wet laboratory component and a human integrative physiology one.

One focus of our work is an integrative physiologic examination of exercise effects in human subjects in clinical studies of exercise training in normal individuals, in individuals at risk of disease (such as pre-diabetes and metabolic syndrome; STRRIDE), and in individuals with disease (such as coronary heart disease, congestive heart failure and cancer).

A second focus of my research group is exploration of genetic determinates of disease risk in human subjects.  We conduct studies of early onset cardiovascular disease (GENECARD; CATHGEN), congestive heart failure (HF-ACTION), peripheral arterial disease (AMNESTI), and metabolic syndrome.  We are exploring analytic models of predicting disease risk using established and innovative statistical methodology.

A third focus of my group’s work is to understand the cellular signaling mechanisms underlying the normal adaptive responses of skeletal muscle to physiologic stimuli, such as occur in exercise conditioning, and to understand the abnormal maladaptive responses that occur in response to pathophysiologic stimuli, such as occur in congestive heart failure, aging and prolonged exposure to microgravity.

Recently we have begun to investigate interactions of genes and lifestyle interventions on cardiometabolic outcomes.  We have experience with clinical lifestyle intervention studies, particularly the contributions of genetic variants to interventions responses.  We call this Lifestyle Medicopharmacogenetics.

KEY WORDS:

exercise, skeletal muscle, energy metabolism, cell signaling, gene expression, cell stretch, heart failure, aging, spaceflight, human genetics, early onset cardiovascular disease, lifestyle medicine


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.