Vertebral artery fusiform aneurysm geometry in predicting rupture risk.


Cerebral aneurysms affect a significant portion of the adult population worldwide. Despite significant progress, the development of robust techniques to evaluate the risk of aneurysm rupture remains a critical challenge. We hypothesize that vertebral artery fusiform aneurysm (VAFA) morphology may be predictive of rupture risk and can serve as a deciding factor in clinical management. To investigate the VAFA morphology, we use a combination of image analysis and machine learning techniques to study a geometric feature set computed from a depository of 37 (12 ruptured and 25 un-ruptured) aneurysm images. Of the 571 unique features we compute, we distinguish five features for use by our machine learning classification algorithm by an analysis of statistical significance. These machine learning methods achieve state-of-the-art classification performance (81.43 ± 13.08%) for the VAFA morphology, and identify five features (cross-sectional area change of aneurysm, maximum diameter of nearby distal vessel, solidity of aneurysm, maximum curvature of nearby distal vessel, and ratio of curvature between aneurysm and its nearby proximal vessel) as effective predictors of VAFA rupture risk. These results suggest that the geometric features of VAFA morphology may serve as useful non-invasive indicators for the prediction of aneurysm rupture risk in surgical settings.





Published Version (Please cite this version)


Publication Info

Zhao, Xiukun, Nathan Gold, Yibin Fang, Shixin Xu, Yongxin Zhang, Jianmin Liu, Arvind Gupta, Huaxiong Huang, et al. (2018). Vertebral artery fusiform aneurysm geometry in predicting rupture risk. Royal Society open science, 5(10). p. 180780. 10.1098/rsos.180780 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Shixin Xu

Assistant Professor of Mathematics at Duke Kunshan University

Shixin Xu is an Assistant Professor of Mathematics.   His research interests are machine learning and data-driven models for diseases,  multiscale modeling of complex fluids, Neurovascular coupling, homogenization theory, and numerical analysis.  The current projects he is working on are

  • image data-based for the prediction of hemorrhagic transformation in acute ischemic stroke,
  • electrodynamics modeling of saltatory conduction along a myelinated axon
  • electrochemical modeling
  • fluid-structure interaction with mass transportation and reaction

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.