Emotion-attention network interactions during a visual oddball task.


Emotional and attentional functions are known to be distributed along ventral and dorsal networks in the brain, respectively. However, the interactions between these systems remain to be specified. The present study used event-related functional magnetic resonance imaging (fMRI) to investigate how attentional focus can modulate the neural activity elicited by scenes that vary in emotional content. In a visual oddball task, aversive and neutral scenes were presented intermittently among circles and squares. The squares were frequent standard events, whereas the other novel stimulus categories occurred rarely. One experimental group [N=10] was instructed to count the circles, whereas another group [N=12] counted the emotional scenes. A main effect of emotion was found in the amygdala (AMG) and ventral frontotemporal cortices. In these regions, activation was significantly greater for emotional than neutral stimuli but was invariant to attentional focus. A main effect of attentional focus was found in dorsal frontoparietal cortices, whose activity signaled task-relevant target events irrespective of emotional content. The only brain region that was sensitive to both emotion and attentional focus was the anterior cingulate gyrus (ACG). When circles were task-relevant, the ACG responded equally to circle targets and distracting emotional scenes. The ACG response to emotional scenes increased when they were task-relevant, and the response to circles concomitantly decreased. These findings support and extend prominent network theories of emotion-attention interactions that highlight the integrative role played by the anterior cingulate.





Published Version (Please cite this version)


Publication Info

Fichtenholtz, Harlan M, Heather L Dean, Daniel G Dillon, Hiroshi Yamasaki, Gregory McCarthy and Kevin S LaBar (2004). Emotion-attention network interactions during a visual oddball task. Brain Res Cogn Brain Res, 20(1). pp. 67–80. 10.1016/j.cogbrainres.2004.01.006 Retrieved from https://hdl.handle.net/10161/6621.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Kevin S. LaBar

Professor of Psychology and Neuroscience

My research focuses on understanding how emotional events modulate cognitive processes in the human brain. We aim to identify brain regions that encode the emotional properties of sensory stimuli, and to show how these regions interact with neural systems supporting social cognition, executive control, and learning and memory. To achieve this goal, we use a variety of cognitive neuroscience techniques in human subject populations. These include psychophysiological monitoring, functional magnetic resonance imaging (fMRI), machine learning,  and behavioral studies in healthy adults as well as psychiatric patients. This integrative approach capitalizes on recent advances in the field and may lead to new insights into cognitive-emotional interactions in the brain.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.