Last Millennium ENSO Diversity and North American Teleconnections: New Insights From Paleoclimate Data Assimilation

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


El Niño-Southern Oscillation (ENSO) variability affects year-to-year changes in North American hydroclimate. Extra-tropical teleconnections are not always consistent between El Niño events due to stochastic atmospheric variability and diverse sea surface temperature anomalies, making it difficult to quantify teleconnections using only instrumentally-based records. Here we use two paleoclimate data assimilation (DA) products spanning the Last Millennium (LM) to compare changes in amplitudes and frequencies of diverse El Niño events during the pre-industrial period and 20th century, and to assess the stationarity of their North American hydroclimate impacts on multi-decadal to centennial timescales. Using several definitions for Central Pacific (CP) and Eastern Pacific (EP) El Niño, we find a marked increase in 20th century EP El Niño intensity, but no significant changes in CP or EP El Niño frequencies in response to anthropogenic forcing. The associated hydroclimate anomalies indicate (a) dry conditions across the eastern-central and northwestern U.S. during CP El Niño and wetter conditions in the same regions during EP El Niño; (b) wet conditions over the southwestern U.S. for both El Niño types. The magnitude of regional hydroclimate teleconnections also shows large natural variability on multi-decadal to centennial timescales. However, when the entire LM is considered, mean hydroclimate anomalies in North America during CP or EP El Niño are consistent in terms of sign (wet vs. dry). Results are sensitive to proxy data and model priors used in DA products. Inconsistencies between El Niño classification methods underscore the need for improved ENSO diversity classification when assessing precipitation teleconnections.






Published Version (Please cite this version)


Publication Info

Luo, X, S Dee, S Stevenson, Y Okumura, N Steiger and L Parsons (2022). Last Millennium ENSO Diversity and North American Teleconnections: New Insights From Paleoclimate Data Assimilation. Paleoceanography and Paleoclimatology, 37(3). 10.1029/2021PA004283 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Luke Parsons


Luke Parsons is a climate researcher and lecturer. He teaches about climate change and climate impacts and studies climate dynamics, drought, and climate change + deforestation + emissions impacts on the environment, human health, well-being, and the economy. In addition to his work as a researcher, Luke is also a Wilderness First Responder and former NOLS instructor who enjoys backpacking, climbing, and taking panoramic landscape photographs.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.