Berge–Gabai knots and L–space satellite operations
| dc.contributor.author | Hom, J | |
| dc.contributor.author | Lidman, T | |
| dc.contributor.author | Vafaee, F | |
| dc.date.accessioned | 2018-09-02T17:22:38Z | |
| dc.date.available | 2018-09-02T17:22:38Z | |
| dc.date.issued | 2015-01-15 | |
| dc.date.updated | 2018-09-02T17:22:37Z | |
| dc.description.abstract | © 2014 Mathematical Sciences Publishers. All rights reserved. Let P(K) be a satellite knot where the pattern P is a Berge–Gabai knot (ie a knot in the solid torus with a nontrivial solid torus Dehn surgery) and the companion K is a nontrivial knot in S3. We prove that P(K) is an L–space knot if and only if K is an L–space knot and P is sufficiently positively twisted relative to the genus of K. This generalizes the result for cables due to Hedden [13] and Hom [17]. | |
| dc.identifier.issn | 1472-2747 | |
| dc.identifier.issn | 1472-2739 | |
| dc.identifier.uri | ||
| dc.language | English | |
| dc.publisher | Mathematical Sciences Publishers | |
| dc.relation.ispartof | Algebraic & Geometric Topology | |
| dc.relation.isversionof | 10.2140/agt.2014.14.3745 | |
| dc.subject | Science & Technology | |
| dc.subject | Physical Sciences | |
| dc.subject | Mathematics | |
| dc.subject | ORDERABLE FUNDAMENTAL-GROUPS | |
| dc.subject | HOLOMORPHIC DISKS | |
| dc.subject | FLOER HOMOLOGY | |
| dc.subject | DEHN SURGERY | |
| dc.subject | SOLID TORI | |
| dc.subject | INVARIANTS | |
| dc.subject | GENUS | |
| dc.title | Berge–Gabai knots and L–space satellite operations | |
| dc.type | Journal article | |
| pubs.begin-page | 3745 | |
| pubs.end-page | 3763 | |
| pubs.issue | 6 | |
| pubs.organisational-group | Trinity College of Arts & Sciences | |
| pubs.organisational-group | Duke | |
| pubs.organisational-group | Mathematics | |
| pubs.publication-status | Published | |
| pubs.volume | 14 |
Files
Original bundle
- Name:
- Berge.pdf
- Size:
- 358.57 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published version