Berge–Gabai knots and L–space satellite operations

dc.contributor.author

Hom, J

dc.contributor.author

Lidman, T

dc.contributor.author

Vafaee, F

dc.date.accessioned

2018-09-02T17:22:38Z

dc.date.available

2018-09-02T17:22:38Z

dc.date.issued

2015-01-15

dc.date.updated

2018-09-02T17:22:37Z

dc.description.abstract

© 2014 Mathematical Sciences Publishers. All rights reserved. Let P(K) be a satellite knot where the pattern P is a Berge–Gabai knot (ie a knot in the solid torus with a nontrivial solid torus Dehn surgery) and the companion K is a nontrivial knot in S3. We prove that P(K) is an L–space knot if and only if K is an L–space knot and P is sufficiently positively twisted relative to the genus of K. This generalizes the result for cables due to Hedden [13] and Hom [17].

dc.identifier.issn

1472-2747

dc.identifier.issn

1472-2739

dc.identifier.uri

https://hdl.handle.net/10161/17371

dc.language

English

dc.publisher

Mathematical Sciences Publishers

dc.relation.ispartof

Algebraic & Geometric Topology

dc.relation.isversionof

10.2140/agt.2014.14.3745

dc.subject

Science & Technology

dc.subject

Physical Sciences

dc.subject

Mathematics

dc.subject

ORDERABLE FUNDAMENTAL-GROUPS

dc.subject

HOLOMORPHIC DISKS

dc.subject

FLOER HOMOLOGY

dc.subject

DEHN SURGERY

dc.subject

SOLID TORI

dc.subject

INVARIANTS

dc.subject

GENUS

dc.title

Berge–Gabai knots and L–space satellite operations

dc.type

Journal article

pubs.begin-page

3745

pubs.end-page

3763

pubs.issue

6

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Duke

pubs.organisational-group

Mathematics

pubs.publication-status

Published

pubs.volume

14

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Berge.pdf
Size:
358.57 KB
Format:
Adobe Portable Document Format
Description:
Published version