Hard-sphere crystallization gets rarer with increasing dimension.

dc.contributor.author

van Meel, JA

dc.contributor.author

Charbonneau, B

dc.contributor.author

Fortini, A

dc.contributor.author

Charbonneau, P

dc.coverage.spatial

United States

dc.date.accessioned

2011-06-21T17:27:48Z

dc.date.accessioned

2016-08-03T13:43:26Z

dc.date.issued

2009-12

dc.description.abstract

We recently found that crystallization of monodisperse hard spheres from the bulk fluid faces a much higher free-energy barrier in four than in three dimensions at equivalent supersaturation, due to the increased geometrical frustration between the simplex-based fluid order and the crystal [J. A. van Meel, D. Frenkel, and P. Charbonneau, Phys. Rev. E 79, 030201(R) (2009)]. Here, we analyze the microscopic contributions to the fluid-crystal interfacial free energy to understand how the barrier to crystallization changes with dimension. We find the barrier to grow with dimension and we identify the role of polydispersity in preventing crystal formation. The increased fluid stability allows us to study the jamming behavior in four, five, and six dimensions and to compare our observations with two recent theories [C. Song, P. Wang, and H. A. Makse, Nature (London) 453, 629 (2008); G. Parisi and F. Zamponi, Rev. Mod. Phys. (to be published)].

dc.description.version

Version of Record

dc.identifier

http://www.ncbi.nlm.nih.gov/pubmed/20365121

dc.identifier.eissn

1550-2376

dc.identifier.uri

https://hdl.handle.net/10161/12593

dc.language

eng

dc.language.iso

en_US

dc.publisher

American Physical Society (APS)

dc.relation.ispartof

Phys Rev E Stat Nonlin Soft Matter Phys

dc.relation.isversionof

10.1103/PhysRevE.80.061110

dc.relation.journal

Physical Review E

dc.relation.replaces

http://hdl.handle.net/10161/4283

dc.relation.replaces

10161/4283

dc.subject

Computer Simulation

dc.subject

Crystallization

dc.subject

Energy Transfer

dc.subject

Glass

dc.subject

Hardness

dc.subject

Microspheres

dc.subject

Models, Chemical

dc.subject

Phase Transition

dc.title

Hard-sphere crystallization gets rarer with increasing dimension.

dc.title.alternative
dc.type

Journal article

duke.contributor.orcid

Charbonneau, P|0000-0001-7174-0821

duke.date.pubdate

2009-12-0

duke.description.issue

6

duke.description.volume

80

pubs.author-url

http://www.ncbi.nlm.nih.gov/pubmed/20365121

pubs.begin-page

061110

pubs.issue

6 Pt 1

pubs.organisational-group

Chemistry

pubs.organisational-group

Duke

pubs.organisational-group

Physics

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.publication-status

Published

pubs.volume

80

Files