Maternal SARS-CoV-2 infection elicits sexually dimorphic placental immune responses.
Date
2021-10
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
There is a persistent bias toward higher prevalence and increased severity of coronavirus disease 2019 (COVID-19) in males. Underlying mechanisms accounting for this sex difference remain incompletely understood. Interferon responses have been implicated as a modulator of COVID-19 disease in adults and play a key role in the placental antiviral response. Moreover, the interferon response has been shown to alter Fc receptor expression and therefore may affect placental antibody transfer. Here, we examined the intersection of maternal-fetal antibody transfer, viral-induced placental interferon responses, and fetal sex in pregnant women infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Placental Fc receptor abundance, interferon-stimulated gene (ISG) expression, and SARS-CoV-2 antibody transfer were interrogated in 68 human pregnancies. Sexually dimorphic expression of placental Fc receptors, ISGs and proteins, and interleukin-10 was observed after maternal SARS-CoV-2 infection, with up-regulation of these features in placental tissue of pregnant individuals with male fetuses. Reduced maternal SARS-CoV-2–specific antibody titers and impaired placental antibody transfer were also observed in pregnancies with a male fetus. These results demonstrate fetal sex-specific maternal and placental adaptive and innate immune responses to SARS-CoV-2.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Bordt, Evan A, Lydia L Shook, Caroline Atyeo, Krista M Pullen, Rose M De Guzman, Marie-Charlotte Meinsohn, Maeva Chauvin, Stephanie Fischinger, et al. (2021). Maternal SARS-CoV-2 infection elicits sexually dimorphic placental immune responses. Science translational medicine, 13(617). p. eabi7428. 10.1126/scitranslmed.abi7428 Retrieved from https://hdl.handle.net/10161/27903.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Staci D. Bilbo
The brain, endocrine, and immune systems are inextricably linked. Immunocompetent cells are located throughout virtually every organ of the body, including the brain and other endocrine tissues, and sophisticated interactions occur among these cells, via hormones, neurotransmitters, and soluble protein messengers called cytokines and chemokines (small chemotactic cytokines). These immune molecules have a powerful impact on neuroendocrine function, including behavior, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources but can also lead to pathology or exacerbate disease if prolonged or exaggerated. However, the mechanisms by which such pathology develops, in particular the precipitation of mental health disorders, remain largely misunderstood. The developing brain is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. There is now ample evidence that immune activation during prenatal or early postnatal development can have profound and long-lasting effects on the brain, and I believe the early-life immune history of an individual may indeed be critical to understanding the later-life risk or resilience of developing certain neuropsychiatric disorders.
A particular focus of my research is on microglia, the primary immunocompetent cells of the CNS, which are involved in multiple aspects of brain development and function, including activity-dependent synaptic pruning and stripping, phagocytosis of apoptotic cells, and angiogenesis. Cytokines such as tumor necrosis factor [TNF]a, interleukin [IL]-1b, and IL-6 are produced primarily by glia within the CNS and are implicated in the developing and adult brain in synaptic scaling, long-term potentiation, and neurogenesis. Microglia originate early in the life of the fetus and are very long-lived, meaning they may have the capacity to reside in the brain for most of the life of the animal. Taken together, I have hypothesized that the developing brain is particularly sensitive to early-life immune activation and the associated risk of later-life neuropsychiatric disorders because (1)microglia are long-lived such that previously activated/functionally altered microglia (i.e. microglia exposed to an early-life immune challenge) may remain within the brain into adulthood, (2) immature microglia within the developing brain are functionally and/or immunologically different than microglia within the adult brain such that early-life immune activation can have greater consequences for neuroimmune function when compared to the adult brain, and (3) microglia and their inflammatory products are critical for normal cognitive function and behavior such that neuroimmune dysfunction results in mental health dysfunction.
The simple goal of my research is thus to understand the important role of the immune system during brain development, and thereby the ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition. In concert with this, I am interested in modeling current social and environmental issues (e.g. poverty, pollution, addiction) that impact the developing brain, and thereby how these factors may eventually be mitigated via careful scholarship, education, and engagement with trainees, collaborators, and members of society.
Danny J Schust
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.