Predicting the Risk of Huntington's Disease with Multiple Longitudinal Biomarkers.

Loading...
Thumbnail Image

Date

2019-06-22

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

99
views
85
downloads

Citation Stats

Abstract

BACKGROUND:Huntington's disease (HD) has gradually become a public health threat, and there is a growing interest in developing prognostic models to predict the time for HD diagnosis. OBJECTIVE:This study aims to develop a novel prognostic model that leverages multiple longitudinal biomarkers to inform the risk of HD. METHODS:The multivariate functional principal component analysis was used to summarize the essential information from multiple longitudinal markers and to obtain a set of prognostic scores. The prognostic scores were used as predictors in a Cox model to predict the right-censored time to diagnosis. We used cross-validation to determine the best model in PREDICT-HD (n = 1,039) and ENROLL-HD (n = 1,776); external validation was carried out in ENROLL-HD. RESULTS:We considered six commonly measured longitudinal biomarkers in PREDICT-HD and ENROLL-HD (Total Motor Score, Symbol Digit Modalities Test, Stroop Word Test, Stroop Color Test, Stroop Interference Test, and Total Functional Capacity). The prognostic model utilizing these longitudinal biomarkers significantly improved the predictive performance over the model with baseline biomarker information. A new prognostic index was computed using the proposed model, and can be dynamically updated over time as new biomarker measurements become available. CONCLUSION:Longitudinal measurements of commonly measured clinical biomarkers substantially improve the risk prediction of Huntington's disease diagnosis. Calculation of the prognostic index informs the patient's risk category and facilitates patient selection in future clinical trials.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.3233/jhd-190345

Publication Info

Li, Fan, Kan Li, Cai Li, Sheng Luo and undefined PREDICT-HD and ENROLL-HD Investigators of the Huntington Study Group (2019). Predicting the Risk of Huntington's Disease with Multiple Longitudinal Biomarkers. Journal of Huntington's disease. pp. 1–10. 10.3233/jhd-190345 Retrieved from https://hdl.handle.net/10161/19131.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Luo

Sheng Luo

Professor of Biostatistics & Bioinformatics

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.