PEXSI-$Σ$: A Green's function embedding method for Kohn-Sham density functional theory

dc.contributor.author

Li, Xiantao

dc.contributor.author

Lin, Lin

dc.contributor.author

Lu, Jianfeng

dc.date.accessioned

2017-04-23T15:47:13Z

dc.date.available

2017-04-23T15:47:13Z

dc.date.issued

2017-04-23

dc.description.abstract

In this paper, we propose a new Green's function embedding method called PEXSI-$\Sigma$ for describing complex systems within the Kohn-Sham density functional theory (KSDFT) framework, after revisiting the physics literature of Green's function embedding methods from a numerical linear algebra perspective. The PEXSI-$\Sigma$ method approximates the density matrix using a set of nearly optimally chosen Green's functions evaluated at complex frequencies. For each Green's function, the complex boundary conditions are described by a self energy matrix $\Sigma$ constructed from a physical reference Green's function, which can be computed relatively easily. In the linear regime, such treatment of the boundary condition can be numerically exact. The support of the $\Sigma$ matrix is restricted to degrees of freedom near the boundary of computational domain, and can be interpreted as a frequency dependent surface potential. This makes it possible to perform KSDFT calculations with $\mathcal{O}(N^2)$ computational complexity, where $N$ is the number of atoms within the computational domain. Green's function embedding methods are also naturally compatible with atomistic Green's function methods for relaxing the atomic configuration outside the computational domain. As a proof of concept, we demonstrate the accuracy of the PEXSI-$\Sigma$ method for graphene with divacancy and dislocation dipole type of defects using the DFTB+ software package.

dc.identifier

http://arxiv.org/abs/1606.00515v2

dc.identifier.uri

https://hdl.handle.net/10161/14057

dc.subject

physics.comp-ph

dc.subject

physics.comp-ph

dc.subject

math.NA

dc.subject

physics.chem-ph

dc.title

PEXSI-$Σ$: A Green's function embedding method for Kohn-Sham density functional theory

dc.type

Journal article

duke.contributor.orcid

Lu, Jianfeng|0000-0001-6255-5165

pubs.author-url

http://arxiv.org/abs/1606.00515v2

pubs.organisational-group

Chemistry

pubs.organisational-group

Duke

pubs.organisational-group

Mathematics

pubs.organisational-group

Physics

pubs.organisational-group

Trinity College of Arts & Sciences

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1606.00515v2.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format