Stereocomplexed poly(lactic acid)-poly(ethylene glycol) nanoparticles with dual-emissive boron dyes for tumor accumulation.

Loading...
Thumbnail Image

Date

2010-09-28

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

366
views
554
downloads

Citation Stats

Abstract

Responsive biomaterials play important roles in imaging, diagnostics, and therapeutics. Polymeric nanoparticles (NPs) containing hydrophobic and hydrophilic segments are one class of biomaterial utilized for these purposes. The incorporation of luminescent molecules into NPs adds optical imaging and sensing capability to these vectors. Here we report on the synthesis of dual-emissive, pegylated NPs with "stealth"-like properties, delivered intravenously (IV), for the study of tumor accumulation. The NPs were created by means of stereocomplexation using a methoxy-terminated polyethylene glycol and poly(D-lactide) (mPEG-PDLA) block copolymer combined with iodide-substituted difluoroboron dibenzoylmethane-poly(L-lactide) (BF2dbm(I)PLLA). Boron nanoparticles (BNPs) were fabricated in two different solvent compositions to study the effects on BNP size distribution. The physical and photoluminescent properties of the BNPs were studied in vitro over time to determine stability. Finally, preliminary in vivo results show that stereocomplexed BNPs injected IV are taken up by tumors, an important prerequisite to their use as hypoxia imaging agents in preclinical studies.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1021/nn901873t

Publication Info

Kersey, Farrell R, Guoqing Zhang, Gregory M Palmer, Mark W Dewhirst and Cassandra L Fraser (2010). Stereocomplexed poly(lactic acid)-poly(ethylene glycol) nanoparticles with dual-emissive boron dyes for tumor accumulation. ACS Nano, 4(9). pp. 4989–4996. 10.1021/nn901873t Retrieved from https://hdl.handle.net/10161/4104.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Kersey

Farrell Ray Kersey

Lecturing Fellow of Chemistry
Palmer

Gregory M. Palmer

Professor of Radiation Oncology

Greg Palmer obtained his B.S. in Biomedical Engineering from Marquette University in 2000, after which he obtained his Ph.D. in BME from the University of Wisconsin, Madison. He is currently an Associate Professor in the Department of Radiation Oncology, Cancer Biology Division at Duke University Medical Center. His primary research focus has been identifying and exploiting the changes in absorption, scattering, and fluorescence properties of tissue associated with cancer progression and therapeutic response. To this end he has implemented a model-based approach for extracting absorber and scatterer properties from diffuse reflectance and fluorescence measurements. More recently he has developed quantitative imaging methodologies for intravital microscopy to characterize tumor functional and molecular response to radiation and chemotherapy. His awards have included the Jack Fowler Award from the Radiation Research Society.

Laboratory Website:
https://radonc.duke.edu/research-education/research-labs/radiation-and-cancer-biology/palmer-lab

Dewhirst

Mark Wesley Dewhirst

Gustavo S. Montana Distinguished Professor Emeritus of Radiation Oncology

Mark W. Dewhirst, DVM, PhD is the Gustavo S. Montana Professor of Radiation Oncology and Vice Director for Basic Science in the Duke Cancer Institute. Dr. Dewhirst has research interests in tumor hypoxia, angiogenesis, hyperthermia and drug transport. He has spent 30 years studying causes of tumor hypoxia and the use of hyperthermia to treat cancer. In collaboration with Professor David Needham in the Pratt School of Engineering, he has developed a novel thermally sensitive drug carrying liposome that has been successfully translated to human clinical trials. He has utilized the thermal characteristics of this liposome to develop an MR imageable form that can accurately reflect drug concentrations in tumors, which then is related to the extent of anti-tumor effect in pre-clinical models. This property has been widely used by other investigators, world-wide, particularly in the area of high intensity focused ultrasound, where it would be possible to literally paint drug to a target zone and visualize this process in real time, during heating. For his work in this area, Dr. Dewhirst was named a Fellow in the AAAS. Dr. Dewhirst has well over 500 peer-reviewed publications, book chapters and reviews, with >20,000 citations and an H-index of 73. He has given named lectures at the University of Western Ontario, Thomas Jefferson University and the New Zealand Cancer Society. He was awarded the Failla Medal and Lecture at the Radiation Research Society in 2008, the Eugene Robinson award for excellence hyperthermia research in 1992 and a similar award from the European Society for Hyperthermic Oncology in 2009. He was named a fellow of ASTRO in 2009 and was awarded the prestigious Gold Medal from the same society in 2012. He is a Senior Editor of Cancer Research and Editor-in-Chief of the International Journal of Hyperthermia. He has mentored 24 graduate students, and many postdoctoral fellows, residents, junior faculty and medical students. He has been particularly skillful in assisting those he has mentored to obtain DOD and NIH fellowships, K awards and first R01 grants. His skill in mentoring has been recognized by the Duke Comprehensive Cancer Center, the Medical Physics Graduate Training programs and the School of Medicine, where he has received “Mentor of the Year” awards. In 2011 he was selected to become the first Associate Dean of Faculty Mentoring in the Duke School of Medicine. In this position, he is implementing a comprehensive program to enhance success in obtaining NIH funding. He graduated from the University of Arizona in 1971 with a degree in Chemistry and Colorado State University in 1975 and 1979 with DVM and PhD degrees, respectively.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.