Dopamine regulation of human speech and bird song: a critical review.
Date
2012-09
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
To understand the neural basis of human speech control, extensive research has been done using a variety of methodologies in a range of experimental models. Nevertheless, several critical questions about learned vocal motor control still remain open. One of them is the mechanism(s) by which neurotransmitters, such as dopamine, modulate speech and song production. In this review, we bring together the two fields of investigations of dopamine action on voice control in humans and songbirds, who share similar behavioral and neural mechanisms for speech and song production. While human studies investigating the role of dopamine in speech control are limited to reports in neurological patients, research on dopaminergic modulation of bird song control has recently expanded our views on how this system might be organized. We discuss the parallels between bird song and human speech from the perspective of dopaminergic control as well as outline important differences between these species.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Simonyan, Kristina, Barry Horwitz and Erich D Jarvis (2012). Dopamine regulation of human speech and bird song: a critical review. Brain Lang, 122(3). pp. 142–150. 10.1016/j.bandl.2011.12.009 Retrieved from https://hdl.handle.net/10161/11208.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Erich David Jarvis
Dr. Jarvis' laboratory studies the neurobiology of vocal communication. Emphasis is placed on the molecular pathways involved in the perception and production of learned vocalizations. They use an integrative approach that combines behavioral, anatomical, electrophysiological and molecular biological techniques. The main animal model used is songbirds, one of the few vertebrate groups that evolved the ability to learn vocalizations. The generality of the discoveries is tested in other vocal learning orders, such as parrots and hummingbirds, as well as non-vocal learners, such as pigeons and non-human primates. Some of the questions require performing behavior/molecular biology experiments in freely ranging animals, such as hummingbirds in tropical forest of Brazil. Recent results show that in songbirds, parrots and hummingbirds, perception and production of song are accompanied by anatomically distinct patterns of gene expression. All three groups were found to exhibit vocally-activated gene expression in exactly 7 forebrain nuclei that are very similar to each other. These structures for vocal learning and production are thought to have evolved independently within the past 70 million years, since they are absent from interrelated non-vocal learning orders. One structure, Area X of the basal ganglia's striatum in songbirds, shows large differential gene activation depending on the social context in which the bird sings. These differences may reflect a semantic content of song, perhaps similar to human language.
The overall goal of the research is to advance knowledge of the neural mechanisms for vocal learning and basic mechanisms of brain function. These goals are further achieved by combined collaborative efforts with the laboratories of Drs. Mooney and Nowicki at Duke University, who study respectively behavior and electrophysiological aspects of songbird vocal communication.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.