AugmentedPCA: A Python Package of Supervised and Adversarial Linear Factor Models

dc.contributor.author

Carson, William

dc.contributor.author

Talbot, Austin

dc.contributor.author

Carlson, David

dc.date.accessioned

2021-12-17T19:15:41Z

dc.date.available

2021-12-17T19:15:41Z

dc.date.issued

2021

dc.date.updated

2021-12-17T19:15:38Z

dc.identifier.uri

https://hdl.handle.net/10161/24087

dc.relation.ispartof

NeurIPS Workshop on Learning Meaningful Representations of Life

dc.title

AugmentedPCA: A Python Package of Supervised and Adversarial Linear Factor Models

dc.type

Journal article

duke.contributor.orcid

Carlson, David|0000-0003-1005-6385

pubs.organisational-group

Pratt School of Engineering

pubs.organisational-group

Computer Science

pubs.organisational-group

Civil and Environmental Engineering

pubs.organisational-group

Duke Clinical Research Institute

pubs.organisational-group

Biostatistics & Bioinformatics

pubs.organisational-group

Duke Institute for Brain Sciences

pubs.organisational-group

Duke

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Institutes and Centers

pubs.organisational-group

School of Medicine

pubs.organisational-group

Basic Science Departments

pubs.organisational-group

University Institutes and Centers

pubs.organisational-group

Institutes and Provost's Academic Units

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Carson et al. (2021) - AugmentedPCA_paper - Billy Carson.pdf
Size:
5.6 MB
Format:
Adobe Portable Document Format