Gene therapy for glycogen storage diseases.

Loading...
Thumbnail Image

Date

2019-10

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

19
views
11
downloads

Citation Stats

Abstract

The focus of this review is the development of gene therapy for glycogen storage diseases (GSDs). GSD results from the deficiency of specific enzymes involved in the storage and retrieval of glucose in the body. Broadly, GSDs can be divided into types that affect liver or muscle or both tissues. For example, glucose-6-phosphatase (G6Pase) deficiency in GSD type Ia (GSD Ia) affects primarily the liver and kidney, while acid α-glucosidase (GAA) deficiency in GSD II causes primarily muscle disease. The lack of specific therapy for the GSDs has driven efforts to develop new therapies for these conditions. Gene therapy needs to replace deficient enzymes in target tissues, which has guided the planning of gene therapy experiments. Gene therapy with adeno-associated virus (AAV) vectors has demonstrated appropriate tropism for target tissues, including the liver, heart and skeletal muscle in animal models for GSD. AAV vectors transduced liver and kidney in GSD Ia and striated muscle in GSD II mice to replace the deficient enzyme in each disease. Gene therapy has been advanced to early phase clinical trials for the replacement of G6Pase in GSD Ia and GAA in GSD II (Pompe disease). Other GSDs have been treated in proof-of-concept studies, including GSD III, IV and V. The future of gene therapy appears promising for the GSDs, promising to provide more efficacious therapy for these disorders in the foreseeable future.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1093/hmg/ddz133

Publication Info

Kishnani, Priya S, Baodong Sun and Dwight D Koeberl (2019). Gene therapy for glycogen storage diseases. Human molecular genetics, 28(R1). pp. R31–R41. 10.1093/hmg/ddz133 Retrieved from https://hdl.handle.net/10161/27504.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.