Supercritical water oxidation of a model fecal sludge without the use of a co-fuel.
dc.contributor.author | Miller, A | |
dc.contributor.author | Espanani, R | |
dc.contributor.author | Junker, A | |
dc.contributor.author | Hendry, D | |
dc.contributor.author | Wilkinson, N | |
dc.contributor.author | Bollinger, D | |
dc.contributor.author | Abelleira-Pereira, JM | |
dc.contributor.author | Deshusses, MA | |
dc.contributor.author | Inniss, E | |
dc.contributor.author | Jacoby, W | |
dc.coverage.spatial | England | |
dc.date.accessioned | 2016-01-10T17:54:26Z | |
dc.date.issued | 2015-12 | |
dc.description.abstract | A continuous supercritical water oxidation reactor was designed and constructed to investigate the conversion of a feces simulant without the use of a co-fuel. The maximum reactor temperature and waste conversion was determined as a function of stoichiometric excess of oxygen in order to determine factor levels for subsequent investigation. 48% oxygen excess showed the highest temperature with full conversion. Factorial analysis was then used to determine the effects of feed concentration, oxygen excess, inlet temperature, and operating pressure on the increase in the temperature of the reacting fluid as well as a newly defined non-dimensional number, NJa representing heat transfer efficiency. Operating pressure and stoichiometric excess oxygen were found to have the most significant impacts on NJa. Feed concentration had a significant impact on fluid temperature increase showing an average difference of 46.4°C between the factorial levels. | |
dc.identifier | ||
dc.identifier | S0045-6535(15)00695-5 | |
dc.identifier.eissn | 1879-1298 | |
dc.identifier.uri | ||
dc.language | eng | |
dc.publisher | Elsevier BV | |
dc.relation.ispartof | Chemosphere | |
dc.relation.isversionof | 10.1016/j.chemosphere.2015.06.076 | |
dc.subject | Continuous | |
dc.subject | N(Ja) | |
dc.subject | Simulated feces | |
dc.subject | Supercritical water oxidation | |
dc.subject | Equipment Design | |
dc.subject | Feces | |
dc.subject | Hot Temperature | |
dc.subject | Models, Theoretical | |
dc.subject | Oxidation-Reduction | |
dc.subject | Oxygen | |
dc.subject | Pressure | |
dc.subject | Sewage | |
dc.subject | Water | |
dc.subject | Water Purification | |
dc.title | Supercritical water oxidation of a model fecal sludge without the use of a co-fuel. | |
dc.type | Journal article | |
pubs.author-url | ||
pubs.begin-page | 189 | |
pubs.end-page | 196 | |
pubs.organisational-group | Civil and Environmental Engineering | |
pubs.organisational-group | Duke | |
pubs.organisational-group | Global Health Institute | |
pubs.organisational-group | Institutes and Provost's Academic Units | |
pubs.organisational-group | Pratt School of Engineering | |
pubs.organisational-group | University Institutes and Centers | |
pubs.publication-status | Published | |
pubs.volume | 141 |
Files
Original bundle
- Name:
- ja107.pdf
- Size:
- 868.23 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published version