Evidence-ranked motif identification.

dc.contributor.author

Georgiev, S

dc.contributor.author

Boyle, AP

dc.contributor.author

Jayasurya, K

dc.contributor.author

Ding, X

dc.contributor.author

Mukherjee, Sayan

dc.contributor.author

Ohler, Uwe

dc.coverage.spatial

England

dc.date.accessioned

2011-06-21T17:30:29Z

dc.date.accessioned

2015-09-03T06:36:26Z

dc.date.issued

2010

dc.description.abstract

cERMIT is a computationally efficient motif discovery tool based on analyzing genome-wide quantitative regulatory evidence. Instead of pre-selecting promising candidate sequences, it utilizes information across all sequence regions to search for high-scoring motifs. We apply cERMIT on a range of direct binding and overexpression datasets; it substantially outperforms state-of-the-art approaches on curated ChIP-chip datasets, and easily scales to current mammalian ChIP-seq experiments with data on thousands of non-coding regions.

dc.description.version

Version of Record

dc.identifier

https://www.ncbi.nlm.nih.gov/pubmed/20156354

dc.identifier

gb-2010-11-2-r19

dc.identifier.eissn

1474-760X

dc.identifier.uri

https://hdl.handle.net/10161/10579

dc.language

eng

dc.language.iso

en_US

dc.relation.ispartof

Genome Biol

dc.relation.isversionof

10.1186/gb-2010-11-2-r19

dc.relation.journal

Genome biology

dc.relation.replaces

http://hdl.handle.net/10161/4393

dc.relation.replaces

10161/4393

dc.subject

Animals

dc.subject

Computational Biology

dc.subject

DNA, Fungal

dc.subject

Genome, Human

dc.subject

Genome-Wide Association Study

dc.subject

Humans

dc.subject

Mice

dc.subject

Oligonucleotide Array Sequence Analysis

dc.subject

Sequence Analysis, DNA

dc.title

Evidence-ranked motif identification.

dc.title.alternative
dc.type

Journal article

duke.date.pubdate

2010-00-00

duke.description.issue

2

duke.description.volume

11

pubs.author-url

https://www.ncbi.nlm.nih.gov/pubmed/20156354

pubs.begin-page

R19

pubs.issue

2

pubs.organisational-group

Basic Science Departments

pubs.organisational-group

Biostatistics & Bioinformatics

pubs.organisational-group

Duke

pubs.organisational-group

School of Medicine

pubs.publication-status

Published

pubs.volume

11

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
276434300016.pdf
Size:
2.38 MB
Format:
Adobe Portable Document Format