Sparcl1/Hevin drives pathological pain through spinal cord astrocyte and NMDA receptor signaling.
Date
2022-10
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Hevin/Sparcl1 is an astrocyte-secreted protein and regulates synapse formation. Here we show that astrocytic hevin signaling plays a critical role in maintaining chronic pain. Compared to wild-type mice, hevin-null mice exhibited normal mechanical and heat sensitivity but reduced inflammatory pain. Interestingly, hevin-null mice have faster recovery than wild-type mice from neuropathic pain after nerve injury. Intrathecal injection of wild-type hevin was sufficient to induce persistent mechanical allodynia in naïve mice. In hevin-null mice with nerve injury, AAV-mediated re-expression of hevin in GFAP-expressing spinal cord astrocytes could reinstate neuropathic pain. Mechanistically, hevin is crucial for spinal cord NMDA receptor (NMDAR) signaling. Hevin potentiated NMDA currents mediated by the GluN2B-containing NMDARs. Furthermore, intrathecal injection of a neutralizing antibody against hevin alleviated acute and persistent inflammatory pain, postoperative pain, and neuropathic pain. Secreted hevin was detected in mouse cerebrospinal fluid (CSF) and nerve injury significantly increased CSF hevin abundance. Finally, neurosurgery caused rapid and substantial increases in SPARCL1/HEVIN levels in human CSF. Collectively, our findings support a critical role of hevin and astrocytes in the maintenance of chronic pain. Neutralizing of secreted hevin with monoclonal antibody may provide a new therapeutic strategy for treating acute and chronic pain and NMDAR-medicated neurodegeneration.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Chen, Gang, Jing Xu, Hao Luo, Xin Luo, Sandeep K Singh, Juan J Ramirez, Michael L James, Joseph P Mathew, et al. (2022). Sparcl1/Hevin drives pathological pain through spinal cord astrocyte and NMDA receptor signaling. JCI insight. p. e161028. 10.1172/jci.insight.161028 Retrieved from https://hdl.handle.net/10161/26120.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Michael Lucas James
With a clinical background in neuroanesthesia and neurointensive care, I have a special interest in translational research in intracerebral hemorrhage and traumatic brain injury. I am fortunate to be part of a unique team of highly motivated and productive individuals who allow me to propel ideas from bench to bedside and the ability to reverse translate ideas from the bedside back to the bench.
Miles Berger
My research team focuses on 3 areas:
1) We are interested in the mechanisms of postoperative neurocognitive disorders such as delirium, and the relationship between these disorders and Alzheimer's Disease and Related Dementias (ADRD). Towards these ends, we use a combination of methods including pre and postoperative CSF and blood sampling, functional neuroimaging, EEG recordings, rigorous biochemical assays, and cognitive testing and delirium screening. In the long run, this work has the potential to help us improve long term neurocognitive outcomes for the more than 20 million Americans over age 60 who undergo anesthesia and surgery each year.
2) We are interested in the idea that altered anesthetic-induced brain EEG waveforms can serve as indicators of specific types of preclinical/prodromal neurodegenerative disease pathology, specific cognitive domain deficits, and postoperative delirium risk. We are studying this topic in the ALADDIN study, a 250 patient prospective cohort study in older surgical patients at Duke. Many people have viewed anesthesia and surgery as a "stress test" for the aging brain; we hope that this work will help us learn how to develop a real-time EEG readout of this "perioperative stress test" for the aging brain, just as ECG analysis can provide a real-time readout of cardiac treadmill stress tests.
3) We are interested in how the APOE4 allele damages brain circuitry throughout the adult lifespan, and how this contributes to increased risk of late onset Alzheimer's disease as well as worse outcomes following other acute brain disorders such as stroke and traumatic brain injury (TBI). In particular, we are investigating the hypothesis that the APOE4 allele leads to increased CNS complement activation throughout adult life, which then contributes to increased synaptic phagocytosis and long term neurocognitive decline. We are also studying whether acutely modulating APOE signaling in older surgical patients with the APOE mimetic peptide CN-105 is sufficient to block postoperative CSF neuroinflammation and complement activation.
Our work is transdisciplinary, and thus our team includes individuals with diverse scientific and clinical backgrounds, ranging from neuropsychology and neuroimaging to proteomics, flow cytometry and behavioral neuroscience in animal models. What unites us is the desire to better understand mechanisms of age-dependent brain dysfunction, both in the perioperative setting and in APOE4 carriers.
Cagla Eroglu
Ru-Rong Ji
I have been doing neuroscience and pain research for over 25 years in multiple academic institutes, including Duke University (2012-current), Harvard Medical School (1998-2012), Johns Hopkins Medical School, Karolinska Institute, and Peking University. The long-term goal of my lab is to identify molecular and cellular mechanisms that underlie the induction and resolution of pathological pain and develop novel pain therapeutics that can target these mechanisms, with specific focus on neuroimmune interactions. We are interested in the following scientific questions. (1) How does inflammation induce and resolve pain via immune cell interaction with primary sensory neurons? (2) How does neuroinflammation drive chronic pain via activation of glial cells in the CNS (microglia and astrocytes) and PNS (satellite glial cells) and regulation of sensory neuron plasticity (peripheral sensitization) and spinal cord synaptic plasticity (central sensitization)? (3) How do specialized pro-resolution mediators (SPMs, e.g., resolvins, protectins, and maresins) control pain via GPCR signaling? (4) How do immunotherapies through the PD-L1/PD-1 and STING/IFN pathways regulate pain, cognition, and neuronal activities? (5) How do secreted miRNAs regulate pain and itch via direct activation of surface receptors and ion channels? (6) How do nerve terminals interact with cancers in chronic pain and itch? (7) How do Toll-like receptors (TLR) in primary sensory neurons sense danger signals and regulate pain and itch? (8) How do regenerative approaches such as autologous conditioned serum (ACS) and bone marrow stromal cells (MSCs) produce long-term pain relief via secreting anti-inflammatory factors and exosomes? We employ a multidisciplinary approach that covers in vitro, ex vivo, and in vivo studies for animal behaviors, electrophysiology, molecular biology, cell biology, and transgenic animals. We have identified numerous therapeutic targets and filed many patents for translational studies. As the Director of the Center for Translational Pain Medicine (CTPM) and a highly cited researcher (Cross Field, Clarivate), I have both administrative and scientific leadership for successful completion of many research projects.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.