Linearly Converging Quasi Branch and Bound Algorithms for Global Rigid Registration

Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats



In recent years, several branch-and-bound (BnB) algorithms have been proposed to globally optimize rigid registration problems. In this paper, we suggest a general framework to improve upon the BnB approach, which we name Quasi BnB. Quasi BnB replaces the linear lower bounds used in BnB algorithms with quadratic quasi-lower bounds which are based on the quadratic behavior of the energy in the vicinity of the global minimum. While quasi-lower bounds are not truly lower bounds, the Quasi-BnB algorithm is globally optimal. In fact we prove that it exhibits linear convergence -- it achieves $\epsilon$-accuracy in $~O(\log(1/\epsilon)) $ time while the time complexity of other rigid registration BnB algorithms is polynomial in $1/\epsilon $. Our experiments verify that Quasi-BnB is significantly more efficient than state-of-the-art BnB algorithms, especially for problems where high accuracy is desired.





Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.