Outer Membrane Vesiculation Facilitates Surface Exchange and In Vivo Adaptation of Vibrio cholerae.

Abstract

Gram-negative bacteria release outer membrane vesicles into the external milieu to deliver effector molecules that alter the host and facilitate virulence. Vesicle formation is driven by phospholipid accumulation in the outer membrane and regulated by the phospholipid transporter VacJ/Yrb. We use the facultative human pathogen Vibrio cholerae to show that VacJ/Yrb is silenced early during mammalian infection, which stimulates vesiculation that expedites bacterial surface exchange and adaptation to the host environment. Hypervesiculating strains rapidly alter their bacterial membrane composition and exhibit enhanced intestinal colonization fitness. This adaptation is exemplified by faster accumulation of glycine-modified lipopolysaccharide (LPS) and depletion of outer membrane porin OmpT, which confers resistance to host-derived antimicrobial peptides and bile, respectively. The competitive advantage of hypervesiculation is lost upon pre-adaptation to bile and antimicrobial peptides, indicating the importance of these adaptive processes. Thus, bacteria use outer membrane vesiculation to exchange cell surface components, thereby increasing survival during mammalian infection.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.chom.2019.12.002

Publication Info

Zingl, Franz G, Paul Kohl, Fatih Cakar, Deborah R Leitner, Fabian Mitterer, Katherine E Bonnington, Gerald N Rechberger, Meta J Kuehn, et al. (2019). Outer Membrane Vesiculation Facilitates Surface Exchange and In Vivo Adaptation of Vibrio cholerae. Cell host & microbe. 10.1016/j.chom.2019.12.002 Retrieved from https://hdl.handle.net/10161/19898.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Kuehn

Margarethe Joanna Kuehn

Associate Professor of Biochemistry

Enterotoxigenic E. coli (ETEC) causes traveler's diarrhea and infant mortality in underdeveloped countries, and Pseudomonas aeruginosa is an opportunistic pathogen for immunocompromised patients. Like all gram negative bacteria studied to date, ETEC and P. aeruginosa produce small outer membrane vesicles that can serve as delivery "bombs" to host tissues. Vesicles contain a subset of outer membrane and soluble periplasmic proteins and lipids. In tissues and sera of infected hosts, vesicles have been observed to bud from the pathogen and come in close contact with epithelial cells. Despite their association with disease, the ability of pathogenic bacteria to distribute an arsenal of virulence factors to the host cells via vesicles remains relatively unexplored.

In our lab, we focus on the genetic, biochemical and functional features of bacterial vesicle production. Using a genetic screen, we have identified genes essential in the vesiculation process, we have identified specific proteins that are enriched in vesicles, and we have identified critical molecules that govern the internalization of vesicles into host cells. Using biochemical analysis of purified vesicles from cell-free culture supernatants, we have found that heat-labile enterotoxin, an important virulence factor of ETEC, is exported from the cells bound to the external surface of vesicles. Presented in this context, it is able to mediate the entry of the entire ETEC vesicle into human colorectal tissue culture cells. We have also discovered that the ability of vesicles to bind to specific cell types depends on their strain of origin: for example, P. aeruginosa vesicles produced by a strain that was cultured from the lungs of a patient with Cystic Fibrosis adhered better to lung than to gut epithelial cells, whereas a strain that was isolated from sera showed no such preference for lung cells. The vesicles stimulate epithelial cells and macrophages to elicit a cytokine response that is distinct from that of LPS (a major component of the vesicles) alone.

These studies will provide new insights into the membrane dynamics of gram-negative bacteria and consequently aid in the identification of new therapeutic targets for important human pathogens.

Guan

Ziqiang Guan

Research Professor in Biochemistry

We develop and apply mass spectrometry techniques to address biochemical and biomedical questions that are lipid-related. Research projects include:

1) Structural lipidomics

o   Develop and apply high resolution tandem mass spectrometry-based lipidomics for the discovery, structural elucidation and functional study of novel lipids.

2) Elucidation of novel pathways/enzymes of lipid biosynthesis and metabolism

o   Genetic, biochemical and MS approaches are employed to identify the substrates and pathways involved in lipid biosynthesis and metabolism

3) Identification of lipid biomarkers of genetic diseases and cancers

o    Provide molecular insights into the disease mechanisms, as well as to serve as the diagnostic and prognostic tools of diseases.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.