Endovascular middle cerebral artery embolic stroke model: a novel approach.

Loading...

Date

2021-06-17

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

56
views
45
downloads

Citation Stats

Attention Stats

Abstract

A video (video 1) describing a novel murine endovascular embolic stroke model is presented. Traditional middle cerebral artery (MCA) occlusion models include a blind insertion of a monofilament string12 into the common or external carotid artery with the expectation to selectively occlude the MCA. However, significant mortality occurs due to subarachnoid hemorrhage and variability in stroke size, possibly related to the filament's malposition-for example, external carotid or proximal internal carotid artery (ICA). Additionally, while the string is in place, it occludes the entire extracranial ICA affecting also the collateral pial circulation.neurintsurg;neurintsurg-2021-017370v1/V1F1V1Video 1Our model includes tail artery access, which tolerates several procedures facilitating survival studies. This model uses autologous blood3 4 clot deployed directly into the MCA, resembling what occurs in clinical practice. Autologous thrombi could be lysed with IA/IV tissue plasminogen activator.In summary, we describe a novel model that resembles real practice, permits multiple catheterizations, results in reliable embolization under fluoroscopic guidance and allows therapeutic interventions not available with traditional models.

Department

Description

Provenance

Subjects

angiography, brain, embolic, endovascular, stroke model

Citation

Published Version (Please cite this version)

10.1136/neurintsurg-2021-017370

Publication Info

Gonzalez, L Fernando, David S Warner, Huaxing Sheng and Eduardo Chaparro (2021). Endovascular middle cerebral artery embolic stroke model: a novel approach. Journal of neurointerventional surgery. 10.1136/neurintsurg-2021-017370 Retrieved from https://hdl.handle.net/10161/23950.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Sheng

Huaxin Sheng

Associate Professor in Anesthesiology

We have successfully developed various rodent models of brain and spinal cord injuries in our lab, such as focal cerebral ischemia, global cerebral ischemia, head trauma, subarachnoid hemorrhage, intracerebral hemorrhage, spinal cord ischemia, and compression injury. We also established cardiac arrest and hemorrhagic shock models for studying multiple organ dysfunction.  Our current studies focus on two projects. One is to examine the efficacy of catalytic antioxidants in treating cerebral ischemia, and the other is to investigate the effectiveness of post-conditioning on the outcome of subarachnoid hemorrhage-induced cognitive dysfunction.

We are a part of the NIH Stroke Preclinical Assessment Network (SPAN).

Chaparro

Eduardo Chaparro

Research Scholar

Dr. Chaparro earned his Medical Doctorate from Javeriana University in Bogotá, Colombia, and his Ph.D. in Medical Sciences with a specialization in Physiology, Pharmacology, and Neuroscience from the University of South Florida (USF) in Tampa, Florida. During his graduate studies at USF’s Anesthesiology Department, he investigated the effects of anesthetics and anti-apoptotic compounds on brain ischemia.

Following the completion of his Ph.D., Dr. Chaparro pursued post-doctoral training at Duke University’s Multidisciplinary Neuroprotection Laboratory. Here, he focused on testing drugs and devices in various animal models of neurological conditions. His work received special recognition for the successful testing of the first hepatocyte growth factor mimetic in an animal model of transient cerebral ischemia. Additionally, he successfully tested an FDA-approved vestibular stimulator for human use.

Dr. Chaparro then joined the Cerebrovascular and Skull Base Division at Duke University’s Department of Neurosurgery. His research has been dedicated to developing treatments for neurovascular conditions such as stroke, moyamoya disease, aneurysms, intracerebral hemorrhages, intravascular stent thrombogenicity, traumatic brain injury, and epilepsy. He currently serves as the Director of the Neurovascular Laboratory.

An entrepreneur at heart, Dr. Chaparro’s interest in hypothermia as a treatment for neuronal inflammation led him to patent a brain-cooling device, which has been successfully tested in non-human primates. He founded Neurocool, a startup aimed at further developing this prototype. As Medical Director, he is working towards FDA approval and the development of a human-compatible device to aid patients with central nervous system inflammatory conditions.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.