Latent protein trees

Loading...
Thumbnail Image

Date

2013-06-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

249
views
129
downloads

Citation Stats

Abstract

Unbiased, label-free proteomics is becoming a powerful technique for measuring protein expression in almost any biological sample. The output of these measurements after preprocessing is a collection of features and their associated intensities for each sample. Subsets of features within the data are from the same peptide, subsets of peptides are from the same protein, and subsets of proteins are in the same biological pathways, therefore, there is the potential for very complex and informative correlational structure inherent in these data. Recent attempts to utilize this data often focus on the identification of single features that are associated with a particular phenotype that is relevant to the experiment. However, to date, there have been no published approaches that directly model what we know to be multiple different levels of correlation structure. Here we present a hierarchical Bayesian model which is specifically designed to model such correlation structure in unbiased, label-free proteomics. This model utilizes partial identification information from peptide sequencing and database lookup as well as the observed correlation in the data to appropriately compress features into latent proteins and to estimate their correlation structure. We demonstrate the effectiveness of the model using artificial/benchmark data and in the context of a series of proteomics measurements of blood plasma from a collection of volunteers who were infected with two different strains of viral influenza. © Institute of Mathematical Statistics, 2013.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1214/13-AOAS639

Publication Info

Henao, R, JW Thompson, MA Moseley, GS Ginsburg, L Carin and JE Lucas (2013). Latent protein trees. Annals of Applied Statistics, 7(2). pp. 691–713. 10.1214/13-AOAS639 Retrieved from https://hdl.handle.net/10161/8948.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Henao

Ricardo Henao

Associate Professor of Biostatistics & Bioinformatics
Thompson

J. Will Thompson

Adjunct Assistant Professor in the Department of Pharmacology and Cancer Biology

Dr. Thompson's research focuses on the development and deployment of proteomics and metabolomics mass spectrometry techniques for the analysis of biological systems. He served as the Assistant Director of the Proteomics and Metabolomics Shared Resource in the Duke School of Medicine from 2007-2021. He currently maintains collaborations in metabolomics and proteomics research at Duke, and develops new tools for chemical analysis as a Principal Scientist at 908 Devices in Carrboro, NC.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.