Learning interacting particle systems: diffusion parameter estimation for aggregation equations

dc.contributor.author

Huang, H

dc.contributor.author

Liu, JG

dc.contributor.author

Lu, J

dc.date.accessioned

2018-02-14T23:45:53Z

dc.date.available

2018-02-14T23:45:53Z

dc.date.issued

2018-02-14

dc.description.abstract

In this article, we study the parameter estimation of interacting particle systems subject to the Newtonian aggregation. Specifically, we construct an estimator $\widehat{\nu}$ with partial observed data to approximate the diffusion parameter $\nu$, and the estimation error is achieved. Furthermore, we extend this result to general aggregation equations with a bounded Lipschitz interaction field.

dc.identifier

http://arxiv.org/abs/1802.02267v1

dc.identifier.uri

https://hdl.handle.net/10161/16083

dc.publisher

World Scientific Pub Co Pte Lt

dc.subject

math.AP

dc.subject

math.AP

dc.subject

math.PR

dc.title

Learning interacting particle systems: diffusion parameter estimation for aggregation equations

dc.type

Journal article

duke.contributor.orcid

Lu, J|0000-0001-6255-5165

pubs.author-url

http://arxiv.org/abs/1802.02267v1

pubs.organisational-group

Chemistry

pubs.organisational-group

Duke

pubs.organisational-group

Mathematics

pubs.organisational-group

Physics

pubs.organisational-group

Trinity College of Arts & Sciences

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1802.02267v1.pdf
Size:
284.1 KB
Format:
Adobe Portable Document Format