Residential metal contamination and potential health risks of exposure in adobe brick houses in Potosí, Bolivia.

Abstract

Potosí, Bolivia, is the site of centuries of historic and present-day mining of the Cerro Rico, a mountain known for its rich polymetallic deposits, and was the site of large-scale Colonial era silver refining operations. In this study, the concentrations of several metal and metalloid elements were quantified in adobe brick, dirt floor, and surface dust samples from 49 houses in Potosí. Median concentrations of total mercury (Hg), lead (Pb), and arsenic (As) were significantly greater than concentrations measured in Sucre, Bolivia, a non-mining town, and exceeded US-based soil screening levels. Adobe brick samples were further analyzed for bioaccessible concentrations of trace elements using a simulated gastric fluid (GF) extraction. Median GF extractable concentrations of Hg, As, and Pb were 0.085, 13.9, and 32.2% of the total element concentration, respectively. Total and GF extractable concentrations of Hg, As, and Pb were used to estimate exposure and potential health risks to children following incidental ingestion of adobe brick particles. Risks were assessed using a range of potential ingestion rates (50-1000mg/day). Overall, the results of the risk assessment show that the majority of households sampled contained concentrations of bioaccessible Pb and As, but not Hg, that represent a potential health risk. Even at the lowest ingestion rate considered, the majority of households exceeded the risk threshold for Pb, indicating that the concentrations of this metal are of particular concern. To our knowledge, this is the first study to quantify key trace elements in building materials in adobe brick houses and the results indicate that these houses are a potential source of exposure to metals and metalloids in South American mining communities. Additional studies are needed to fully characterize personal exposure and to understand potential adverse health outcomes within the community.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.scitotenv.2016.03.152

Publication Info

McEwen, Abigail R, Heileen Hsu-Kim, Nicholas A Robins, Nicole A Hagan, Susan Halabi, Olivo Barras, Daniel deB Richter, John J Vandenberg, et al. (2016). Residential metal contamination and potential health risks of exposure in adobe brick houses in Potosí, Bolivia. The Science of the total environment, 562. pp. 237–246. 10.1016/j.scitotenv.2016.03.152 Retrieved from https://hdl.handle.net/10161/21242.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Vandenberg

John Vandenberg

Adjunct Professor in the Division of Environmental Sciences and Policy

Dr. Vandenberg served as Director of the Health and Environmental Effects Assessment Park Division of the Center for Public Health and Environmental Assessment, at the US Environmental Protection Agency (retired, 2021). He has over 35 years of experience in environmental health risk assessment and was responsible for leadership, planning and oversight of EPA’s Integrated Science Assessments for the major (criteria) air pollutants and Integrated Risk Information System (IRIS) assessments for high priority hazardous air pollutants, and for development of new risk assessment methodologies. He has testified to committees of the U.S. House of Representatives and the U.S. Senate on the health and environmental effects of air pollutants and served as National Program Director of EPA’s Human Health Risk Assessment program and Particulate Matter Research program. Dr. Vandenberg has been a consultant to the World Health Organization, represented EPA in scientific meetings in Europe, South America, Asia and the Middle East, and has served on numerous university and State scientific advisory committees. He was elected Fellow of the Society for Risk Analysis and he is recipient of EPA’s Statesmanship and Distinguished Service Awards. 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.