Geometrical frustration: a study of four-dimensional hard spheres.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


The smallest maximum-kissing-number Voronoi polyhedron of three-dimensional (3D) Euclidean spheres is the icosahedron, and the tetrahedron is the smallest volume that can show up in Delaunay tessellation. No periodic lattice is consistent with either, and hence these dense packings are geometrically frustrated. Because icosahedra can be assembled from almost perfect tetrahedra, the terms "icosahedral" and "polytetrahedral" packing are often used interchangeably, which leaves the true origin of geometric frustration unclear. Here we report a computational study of freezing of 4D Euclidean hard spheres, where the densest Voronoi cluster is compatible with the symmetry of the densest crystal, while polytetrahedral order is not. We observe that, under otherwise comparable conditions, crystal nucleation in four dimensions is less facile than in three dimensions, which is consistent with earlier observations [M. Skoge, Phys. Rev. E 74, 041127 (2006)]. We conclude that it is the geometrical frustration of polytetrahedral structures that inhibits crystallization.






Published Version (Please cite this version)


Publication Info

van Meel, JA, D Frenkel and P Charbonneau (2009). Geometrical frustration: a study of four-dimensional hard spheres. Phys Rev E Stat Nonlin Soft Matter Phys, 79(3 Pt 1). p. 030201. 10.1103/PhysRevE.79.030201 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Patrick Charbonneau

Professor of Chemistry

Professor Charbonneau studies soft matter. His work combines theory and simulation to understand the glass problem, protein crystallization, microphase formation, and colloidal assembly in external fields.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.