Creation of Non-Contact Device for Use in Metastatic Melanoma Margin Identification in <i>ex vivo</i> Mouse Brain.
Date
2022-01
Editors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Attention Stats
Abstract
Because contemporary intraoperative tumor detection modalities, such as intraoperative MRI, are not ubiquitously available and can disrupt surgical workflow, there is an imperative for an accessible diagnostic device that can meet the surgeon's needs in identifying tissue types. The objective of this paper is to determine the efficacy of a novel non-contact tumor detection device for metastatic melanoma boundary identification in a tissue-mimicking phantom, evaluate the identification of metastatic melanoma boundaries in ex vivo mouse brain tissue, and find the error associated with identifying this boundary. To validate the spatial and fluorescence resolution of the device, tissue-mimicking phantoms were created with modifiable optical properties. Phantom tissue provided ground truth measurements for fluorophore concentration differences with respect to spatial dimensions. Modeling metastatic disease, ex vivo melanoma brain metastases were evaluated to detect differences in fluorescence between healthy and neoplastic tissue. This analysis includes determining required-to-observe fluorescence differences in tissue. H&E staining confirmed tumor presence in mouse tissue samples. The device detected a difference in normalized average fluorescence intensity in all three phantoms. There were differences in fluorescence with the presence and absence of melanin. The estimated tumor boundary of all tissue phantoms was within 0.30 mm of the ground truth tumor boundary for all boundaries. Likewise, when applied to the melanoma-bearing brains from ex vivo mice, a difference in normalized fluorescence intensity was successfully detected. The potential prediction window for the tumor boundary location is less than 1.5 mm for all ex vivo mouse brain tumors boundaries. We present a non-contact, laser-induced fluorescence device that can identify tumor boundaries based on changes in laser-induced fluorescence emission intensity. The device can identify phantom ground truth tumor boundaries within 0.30 mm using instantaneous rate of change of normalized fluorescence emission intensity and can detect endogenous fluorescence differences in melanoma brain metastases in ex vivo mouse tissue.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Tucker, Matthew, Matthew Lacayo, Suzanna Joseph, Weston Ross, Pakawat Chongsathidkiet, Peter Fecci and Patrick J Codd (2022). Creation of Non-Contact Device for Use in Metastatic Melanoma Margin Identification in ex vivo Mouse Brain. Proceedings of SPIE--the International Society for Optical Engineering, 11945. p. 1194507. 10.1117/12.2608975 Retrieved from https://hdl.handle.net/10161/29425.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Peter Edward Fecci
As the Director of both the Brain Tumor Immunotherapy Program and the Center for Brain and Spine Metastasis at Duke University, I focus our programmatic interests on the design, optimization, and monitoring of immune-based treatment platforms for patients with intracranial tumors, whether primary or metastatic. Within this broad scope, however, my own group looks more specifically at limitations to immunotherapeutic success, with a particular focus on understanding and reversing T cell dysfunction in patients with glioblastoma (GBM) and brain metastases. We employ a systematic approach to categorizing T cell dysfunction (Woroniecka et al, Clin Cancer Res 2018 Aug 15;24(16):3792-3802), and whereas our earlier work addressed concerns for regulatory T cell-induced tolerance, we now heavily study T cell ignorance and exhaustion, as well. Regarding the former, we recently published the novel phenomenon of S1P1-mediated bone marrow T cell sequestration in patients with intracranial tumors (Chongsathidkiet et al, Nat Medicine 2018 Sep;24(9):1459-1468). Regarding the latter, we have likewise recently identified and characterized exhaustion as a significant limitation to T-cell function within GBM (Woroniecka et al, Clin Cancer Res 2018 Sep 1;24(17):4175-4186). I very much look to collaboratively integrate our approaches with others investigating innovative treatment options. I continue my focus on combining strategies for reversing T cell deficits with current and novel immune-based platforms as a means of deriving and improving rational and precise anti-tumor therapies. It is my sincerest desire to forge a career focused on co-operative, multi-disciplinary, organized brain tumor therapy. Ultimately, my goal is to help coordinate the efforts of a streamlined and effective center for brain tumor research and clinical care. I hope to play some role in ushering in a period where the science and treatment arms of brain tumor therapy suffer no disjoint, but instead represent the convergent efforts of researchers, neuro-oncologists, medical oncologists, radiation oncologists, biomedical engineers, and neurosurgeons alike. I hope to see such synergy become standard of care.
Patrick James Codd
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.