Epigenome-wide methylation and progression to high-grade cervical intraepithelial neoplasia (CIN2+): a prospective cohort study in the United States.



Methylation levels may be associated with and serve as markers to predict risk of progression of precancerous cervical lesions. We conducted an epigenome-wide association study (EWAS) of CpG methylation and progression to high-grade cervical intraepithelial neoplasia (CIN2 +) following an abnormal screening test.


A prospective US cohort of 289 colposcopy patients with normal or CIN1 enrollment histology was assessed. Baseline cervical sample DNA was analyzed using Illumina HumanMethylation 450K (n = 76) or EPIC 850K (n = 213) arrays. Participants returned at provider-recommended intervals and were followed up to 5 years via medical records. We assessed continuous CpG M values for 9 cervical cancer-associated genes and time-to-progression to CIN2+. We estimated CpG-specific time-to-event ratios (TTER) and hazard ratios using adjusted, interval-censored Weibull accelerated failure time models. We also conducted an exploratory EWAS to identify novel CpGs with false discovery rate (FDR) < 0.05.


At enrollment, median age was 29.2 years; 64.0% were high-risk HPV-positive, and 54.3% were non-white. During follow-up (median 24.4 months), 15 participants progressed to CIN2+. Greater methylation levels were associated with a shorter time-to-CIN2+ for CADM1 cg03505501 (TTER = 0.28; 95%CI 0.12, 0.63; FDR = 0.03) and RARB Cluster 1 (TTER = 0.46; 95% CI 0.29, 0.71; FDR = 0.01). There was evidence of similar trends for DAPK1 cg14286732, PAX1 cg07213060, and PAX1 Cluster 1. The EWAS detected 336 novel progression-associated CpGs, including those located in CpG islands associated with genes FGF22, TOX, COL18A1, GPM6A, XAB2, TIMP2, GSPT1, NR4A2, and APBB1IP.


Using prospective time-to-event data, we detected associations between CADM1-, DAPK1-, PAX1-, and RARB-related CpGs and cervical disease progression, and we identified novel progression-associated CpGs.


Methylation levels at novel CpG sites may help identify individuals with ≤CIN1 histology at higher risk of progression to CIN2+ and inform risk-based cervical cancer screening guidelines.





Published Version (Please cite this version)


Publication Info

Bukowski, Alexandra, Cathrine Hoyo, Nadja A Vielot, Misa Graff, Michael R Kosorok, Wendy R Brewster, Rachel L Maguire, Susan K Murphy, et al. (2023). Epigenome-wide methylation and progression to high-grade cervical intraepithelial neoplasia (CIN2+): a prospective cohort study in the United States. BMC cancer, 23(1). p. 1072. 10.1186/s12885-023-11518-6 Retrieved from https://hdl.handle.net/10161/30397.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Susan Kay Murphy

Associate Professor in Obstetrics and Gynecology

Dr. Murphy is a tenured Associate Professor in the Department of Obstetrics and Gynecology and serves as Chief of the Division of Reproductive Sciences. As a molecular biologist with training in human epigenetics, her research interests are largely centered around the role of epigenetic modifications in health and disease. 

Dr. Murphy has ongoing projects on gynecologic malignancies, including approaches to eradicate ovarian cancer cells that survive chemotherapy and later give rise to recurrent disease. Dr. Murphy is actively involved in many collaborative projects relating to the Developmental Origins of Health and Disease (DOHaD).

Her lab is currently working on preconception environmental exposures in males, particularly on the impact of cannabis on the sperm epigenome and the potential heritability of these effects. They are also studying the epigenetic and health effects of in utero exposures, with primary focus on children from the Newborn Epigenetics STudy (NEST), a pregnancy cohort she co-founded who were recruited from central North Carolina between 2005 and 2011. Dr. Murphy and her colleagues continue to follow NEST children to determine relationships between prenatal exposures and later health outcomes.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.