Instantons on multi-Taub-NUT Spaces II: Bow Construction
Abstract
Unitary anti-self-dual connections on Asymptotically Locally Flat (ALF) hyperk"ahler spaces are constructed in terms of data organized in a bow. Bows generalize quivers, and the relevant bow gives rise to the underlying ALF space as the moduli space of its particular representation -- the small representation. Any other representation of that bow gives rise to anti-self-dual connections on that ALF space. We prove that each resulting connection has finite action, i.e. it is an instanton. Moreover, we derive the asymptotic form of such a connection and compute its topological class.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Collections
Scholars@Duke
Mark A. Stern
The focus of Professor Stern's research is the study of analytic problems arising in geometry and physics.
In recent and ongoing work, Professor Stern has studied analytical, geometric, and topological questions arising in Yang-Mills theory. These include analyzing the moduli space of Yang Mills instantons on gravitational instantons, analyzing the asymptotic structure of instantons (proving a nonlinear analog of the inverse square law of electromagnetism), and analyzing the structure of singularities of instantons and of harmonic maps.
In addition, Professor Stern has recently studied questions arising in the interplay between geometric group theory and Lp and L2 cohomology. This work includes finding new bounds on L2 betti numbers of negatively curved manifolds, and new growth,
stability, and vanishing results for Lp and L2 cohomology of symmetric and locally symmetric spaces.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.