Long-term equity anticipation securities and stock market volatility dynamics

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats



Recent empirical findings suggest that the long-run dependence in U.S. stock market volatility is best described by a slowly mean-reverting fractionally integrated process. The present study complements this existing time-series-based evidence by comparing the risk-neutralized option pricing distributions from various ARCH-type formulations. Utilizing a panel data set consisting of newly created exchange traded long-term equity anticipation securities, or leaps, on the Standard and Poor's 500 stock market index with maturity times ranging up to three years, we find that the degree of mean reversion in the volatility process implicit in these prices is best described by a Fractionally Integrated EGARCH (FIEGARCH) model. © 1999 Elsevier Science S.A. All rights reserved.








Tim Bollerslev

Juanita and Clifton Kreps Distinguished Professor of Economics, in Trinity College of Arts and Sciences

Professor Bollerslev conducts research in the areas of time-series econometrics, financial econometrics, and empirical asset pricing finance. He is particularly well known for his developments of econometric models and procedures for analyzing and forecasting financial market volatility. Much of Bollerslev’s recent research has focused on the analysis of newly available high-frequency intraday, or tick-by-tick, financial data and so-called realized volatility measures, macroeconomic news announcement effects, and the pricing of volatility risk. Recent reviews of his work are available in the two Handbook chapters "Volatility and Correlation Forecasting” (with Torben G. Andersen, Peter Christoffersen and Francis X. Diebold), Handbook of Economic Forecasting, (eds. Graham Elliott, Clive W.J. Granger and Allan Timmermann), 2006, and "Parametric and Nonparametric Volatility Measurement” (with Torben G. Andersen and Francis X. Diebold), in Handbook of Financial Econometrics, (eds. Yacine Aït-Sahalia and Lars P. Hansen), 2009.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.