RECOVER-NEURO: study protocol for a multi-center, multi-arm, phase 2, randomized, active comparator trial evaluating three interventions for cognitive dysfunction in post-acute sequelae of SARS-CoV-2 infection (PASC).

Abstract

Background

Post-acute sequelae of SARS-CoV-2 infection (PASC) symptoms have broad impact, and may affect individuals regardless of COVID-19 severity, socioeconomic status, race, ethnicity, or age. A prominent PASC symptom is cognitive dysfunction, colloquially referred to as "brain fog" and characterized by declines in short-term memory, attention, and concentration. Cognitive dysfunction can severely impair quality of life by impairing daily functional skills and preventing timely return to work.

Methods

RECOVER-NEURO is a prospective, multi-center, multi-arm, phase 2, randomized, active-comparator design investigating 3 interventions: (1) BrainHQ is an interactive, online cognitive training program; (2) PASC-Cognitive Recovery is a cognitive rehabilitation program specifically designed to target frequently reported challenges among individuals with brain fog; (3) transcranial direct current stimulation (tDCS) is a noninvasive form of mild electrical brain stimulation. The interventions will be combined to establish 5 arms: (1) BrainHQ; (2) BrainHQ + PASC-Cognitive Recovery; (3) BrainHQ + tDCS-active; (4) BrainHQ + tDCS-sham; and (5) Active Comparator. The interventions will occur for 10 weeks. Assessments will be completed at baseline and at the end of intervention and will include cognitive testing and patient-reported surveys. All study activities can be delivered in Spanish and English.

Discussion

This study is designed to test whether cognitive dysfunction symptoms can be alleviated by the use of pragmatic and established interventions with different mechanisms of action and with prior evidence of improving cognitive function in patients with neurocognitive disorder. If successful, results will provide beneficial treatments for PASC-related cognitive dysfunction.

Trial registration

ClinicalTrials.gov NCT05965739. Registered on July 25, 2023.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1186/s13063-024-08156-z

Publication Info

Knopman, David S, Daniel T Laskowitz, Deborah C Koltai, Leigh E Charvet, Jacqueline H Becker, Alex D Federman, Juan Wisnivesky, Henry Mahncke, et al. (2024). RECOVER-NEURO: study protocol for a multi-center, multi-arm, phase 2, randomized, active comparator trial evaluating three interventions for cognitive dysfunction in post-acute sequelae of SARS-CoV-2 infection (PASC). Trials, 25(1). p. 326. 10.1186/s13063-024-08156-z Retrieved from https://hdl.handle.net/10161/31116.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Laskowitz

Daniel Todd Laskowitz

Professor of Neurology

Our laboratory uses molecular biology, cell culture, and animal modeling techniques to examine the CNS response to acute injury. In particular, our laboratory examines the role of microglial activation and the endogenous CNS inflammatory response in exacerbating secondary injury following acute brain insult. Much of the in vitro work in this laboratory is dedicated to elucidating cellular responses to injury with the ultimate goal of exploring new therapeutic interventions in the clinical setting of stroke, intracranial hemorrhage, and closed head injury.

In conjunction with the Multidisciplinary Neuroprotection Laboratories, we also focus on clinically relevant small animal models of acute CNS injury. For example, we have recently characterized murine models of closed head injury, subarachnoid hemorrhage, intracranial hemorrhage and perinatal hypoxia-ischemia, in addition to the standard rodent models of focal stroke and transient forebrain ischemia. Recently we have adapted several of these models from the rat to the mouse to take advantage of murine transgenic technology. The objective of these studies are two-fold: to gain better insight into the cellular responses and pathophysiology of acute brain injury, and to test novel therapeutic strategies for clinical translation. In both cell culture systems and animal models, our primary focus is on examining the role of oxidative stress and inflammatory mechanism in mediating brain injury following acute brain insult, and examining the neuroprotective effects of endogenous apolipoprotein E in the injured mammalian central nervous system.

Our laboratory is committed to translational research, and has several active clinical research protocols, which are designed to bring the research performed in the Multidisciplinary Research Laboratories to the clinical arena. These protocols are centered around patients following stroke and acute brain injury, and are primarily based out of the Emergency Room and Neurocritical Care Unit. For example, we are currently examining the role of inflammatory mediators for use as a point-of-care diagnostic marker following stroke, intracranial hemorrhage, and closed head injury. We have recently translated a novel apoE mimetic from the preclinical setting to a multi center Phase 2 trial evaluating efficacy in intracranial hemorrhage. We are also examining the functional role of different polymorphisms of of inflammatory cytokines in the setting of acute brain injury and neurological dysfunction following cardiopulmonary bypass.

Koltai

Deborah Koltai

Associate Professor in Psychiatry and Behavioral Sciences
  1. Investigation of factors related to care of epilepsy patients in Uganda, Africa to inform capacity building and infrastructure strengthening efforts. Studies have involved a pursuit of understanding the cultural context and its impact on health care delivery and utilization.

    2) Development and psychometric validation of neuropsychological and behavioral instruments.

    3) The effect of psychological interventions on the abilities and adjustment of dementia patients and those at-risk for developing neurodegenerative illnesses such as Alzheimer's disease. Interventions include modified cognitive (mnemonic; organizational) strategies, and traditional psychotherapy (dynamic and behavioral). 
Lokhnygina

Yuliya Vladimirovna Lokhnygina

Associate Professor of Biostatistics & Bioinformatics

Statistical methods in clinical trials, survival analysis, adaptive designs, adaptive treatment strategies, causal inference in observational studies, semiparametric inference


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.