Convolutional neural network to identify symptomatic Alzheimer's disease using multimodal retinal imaging.

dc.contributor.author

Wisely, C Ellis

dc.contributor.author

Wang, Dong

dc.contributor.author

Henao, Ricardo

dc.contributor.author

Grewal, Dilraj S

dc.contributor.author

Thompson, Atalie C

dc.contributor.author

Robbins, Cason B

dc.contributor.author

Yoon, Stephen P

dc.contributor.author

Soundararajan, Srinath

dc.contributor.author

Polascik, Bryce W

dc.contributor.author

Burke, James R

dc.contributor.author

Liu, Andy

dc.contributor.author

Carin, Lawrence

dc.contributor.author

Fekrat, Sharon

dc.date.accessioned

2020-12-08T13:29:14Z

dc.date.available

2020-12-08T13:29:14Z

dc.date.issued

2020-11-26

dc.date.updated

2020-12-08T13:29:12Z

dc.description.abstract

BACKGROUND/AIMS:To develop a convolutional neural network (CNN) to detect symptomatic Alzheimer's disease (AD) using a combination of multimodal retinal images and patient data. METHODS:Colour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and ultra-widefield (UWF) colour and fundus autofluorescence (FAF) scanning laser ophthalmoscopy images were captured in individuals with AD or healthy cognition. A CNN to predict AD diagnosis was developed using multimodal retinal images, OCT and OCTA quantitative data, and patient data. RESULTS:284 eyes of 159 subjects (222 eyes from 123 cognitively healthy subjects and 62 eyes from 36 subjects with AD) were used to develop the model. Area under the receiving operating characteristic curve (AUC) values for predicted probability of AD for the independent test set varied by input used: UWF colour AUC 0.450 (95% CI 0.282, 0.592), OCTA SCP 0.582 (95% CI 0.440, 0.724), UWF FAF 0.618 (95% CI 0.462, 0.773), GC-IPL maps 0.809 (95% CI 0.700, 0.919). A model incorporating all images, quantitative data and patient data (AUC 0.836 (CI 0.729, 0.943)) performed similarly to models only incorporating all images (AUC 0.829 (95% CI 0.719, 0.939)). GC-IPL maps, quantitative data and patient data AUC 0.841 (95% CI 0.739, 0.943). CONCLUSION:Our CNN used multimodal retinal images to successfully predict diagnosis of symptomatic AD in an independent test set. GC-IPL maps were the most useful single inputs for prediction. Models including only images performed similarly to models also including quantitative data and patient data.

dc.identifier

bjophthalmol-2020-317659

dc.identifier.issn

0007-1161

dc.identifier.issn

1468-2079

dc.identifier.uri

https://hdl.handle.net/10161/21874

dc.language

eng

dc.publisher

BMJ

dc.relation.ispartof

The British journal of ophthalmology

dc.relation.isversionof

10.1136/bjophthalmol-2020-317659

dc.subject

diagnostic tests/investigation

dc.subject

imaging

dc.subject

retina

dc.title

Convolutional neural network to identify symptomatic Alzheimer's disease using multimodal retinal imaging.

dc.type

Journal article

duke.contributor.orcid

Henao, Ricardo|0000-0003-4980-845X

duke.contributor.orcid

Grewal, Dilraj S|0000-0002-2229-5343

duke.contributor.orcid

Burke, James R|0000-0002-3408-7787

duke.contributor.orcid

Liu, Andy|0000-0003-3096-1788

duke.contributor.orcid

Fekrat, Sharon|0000-0003-4403-5996

pubs.organisational-group

School of Medicine

pubs.organisational-group

Ophthalmology, Vitreoretinal Diseases & Surgery

pubs.organisational-group

Duke

pubs.organisational-group

Ophthalmology

pubs.organisational-group

Clinical Science Departments

pubs.organisational-group

Electrical and Computer Engineering

pubs.organisational-group

Duke Clinical Research Institute

pubs.organisational-group

Biostatistics & Bioinformatics

pubs.organisational-group

Pratt School of Engineering

pubs.organisational-group

Institutes and Centers

pubs.organisational-group

Basic Science Departments

pubs.organisational-group

Neurology, Behavioral Neurology

pubs.organisational-group

Neurology

pubs.publication-status

Published

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Retinal changes in AD-Wisely 2020.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format