Impacts of shale gas wastewater disposal on water quality in western Pennsylvania.
Date
2013-10-15
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
The safe disposal of liquid wastes associated with oil and gas production in the United States is a major challenge given their large volumes and typically high levels of contaminants. In Pennsylvania, oil and gas wastewater is sometimes treated at brine treatment facilities and discharged to local streams. This study examined the water quality and isotopic compositions of discharged effluents, surface waters, and stream sediments associated with a treatment facility site in western Pennsylvania. The elevated levels of chloride and bromide, combined with the strontium, radium, oxygen, and hydrogen isotopic compositions of the effluents reflect the composition of Marcellus Shale produced waters. The discharge of the effluent from the treatment facility increased downstream concentrations of chloride and bromide above background levels. Barium and radium were substantially (>90%) reduced in the treated effluents compared to concentrations in Marcellus Shale produced waters. Nonetheless, (226)Ra levels in stream sediments (544-8759 Bq/kg) at the point of discharge were ~200 times greater than upstream and background sediments (22-44 Bq/kg) and above radioactive waste disposal threshold regulations, posing potential environmental risks of radium bioaccumulation in localized areas of shale gas wastewater disposal.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Warner, Nathaniel R, Cidney A Christie, Robert B Jackson and Avner Vengosh (2013). Impacts of shale gas wastewater disposal on water quality in western Pennsylvania. Environ Sci Technol, 47(20). pp. 11849–11857. 10.1021/es402165b Retrieved from https://hdl.handle.net/10161/8303.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Avner Vengosh
Avner Vengosh is a Distinguished Professor and Nicholas Chair of Environmental Quality at the Nicholas School of the Environment. He is the chair of the Division of Earth and Climate Sciences. Professor Vengosh and his team have studied the energy-water nexus, conducting pioneer research on the impact of hydraulic fracturing and coal ash disposal on the quantity and quality of water resources in the U.S. and China. He has also investigated the sources and mechanisms of water contamination in numerous countries across the globe, including salinity and radioactivity in the Middle East, uranium in India, fluoride in Eastern Africa, arsenic in Vietnam, and hexavalent chromium in North Carolina and China. As part of these studies, his team has developed novel geochemical and isotopic tracers that are used as fingerprints to delineate the sources of water contamination and evaluate potential risks for human health. Currently, his team is engaged in studying phosphate rocks geochemistry and the impact of fertilizers on soil and water quality, unconventional sources of critical raw materials, and potential environmental effects of lithium mining from hard rocks and brines. He is a Fellow of the Geological Society of America (GSA) and International Association of Geochemistry (IAGC). In 2019, 2020 and 2021 he was recognized as one of the Web of Science Highly Cited Researchers. He serves as an Editor of GeoHealth and on the editorial board of the journal Environmental Science and Technology. He has published 171 scientific papers in leading international journals. His recent cross-disciplinary book “Water Quality Impacts of the Energy-Water Nexus” (Cambridge University Press, 2020) provides an integrated assessment of the different scientific and policy tools around the energy-water nexus. It focuses on how water use, and wastewater and waste solids produced from fossil fuel energy production affect water quality and quantity. Summarizing cutting edge research, the book describes the scientific methods for detecting contamination sources in the context of policy and regulations.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.