Analytic-domain lens design with proximate ray tracing.
Date
2010-08-01
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
We have developed an alternative approach to optical design which operates in the analytical domain so that an optical designer works directly with rays as analytical functions of system parameters rather than as discretely sampled polylines. This is made possible by a generalization of the proximate ray tracing technique which obtains the analytical dependence of the rays at the image surface (and ray path lengths at the exit pupil) on each system parameter. The resulting method provides an alternative direction from which to approach system optimization and supplies information which is not typically available to the system designer. In addition, we have further expanded the procedure to allow asymmetric systems and arbitrary order of approximation, and have illustrated the performance of the method through three lens design examples.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Collections
Scholars@Duke
David J. Brady
David Brady leads the Duke Information Spaces Project (DISP). Historically, DISP has focused on computational imaging systems, with particular emphasis on smart cameras for security, consumer, transportation and broadcast applications. Currently DISP focuses primarily on the use of artificial intelligence in camera arrays for interactive broadcasting.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.