Numerical scheme for a spatially inhomogeneous matrix-valued quantum Boltzmann equation

dc.contributor.author

Lu, J

dc.contributor.author

Mendl, CB

dc.date.accessioned

2017-04-26T17:47:32Z

dc.date.available

2017-04-26T17:47:32Z

dc.date.issued

2015-06-05

dc.description.abstract

© 2015 Elsevier Inc.We develop an efficient algorithm for a spatially inhomogeneous matrix-valued quantum Boltzmann equation derived from the Hubbard model. The distribution functions are 2 × 2 matrix-valued to accommodate the spin degree of freedom, and the scalar quantum Boltzmann equation is recovered as a special case when all matrices are proportional to the identity. We use Fourier discretization and fast Fourier transform to efficiently evaluate the collision kernel with spectral accuracy, and numerically investigate periodic, Dirichlet and Maxwell boundary conditions. Model simulations quantify the convergence to local and global thermal equilibrium.

dc.identifier.eissn

1090-2716

dc.identifier.issn

0021-9991

dc.identifier.uri

https://hdl.handle.net/10161/14107

dc.publisher

Elsevier BV

dc.relation.ispartof

Journal of Computational Physics

dc.relation.isversionof

10.1016/j.jcp.2015.03.020

dc.title

Numerical scheme for a spatially inhomogeneous matrix-valued quantum Boltzmann equation

dc.type

Journal article

duke.contributor.orcid

Lu, J|0000-0001-6255-5165

pubs.begin-page

303

pubs.end-page

316

pubs.organisational-group

Chemistry

pubs.organisational-group

Duke

pubs.organisational-group

Mathematics

pubs.organisational-group

Physics

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.publication-status

Published

pubs.volume

291

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1408.1782v2.pdf
Size:
1.31 MB
Format:
Adobe Portable Document Format