C-C Motif Chemokine 5 Attenuates Angiotensin II-Dependent Kidney Injury by Limiting Renal Macrophage Infiltration.

Abstract

Inappropriate activation of the renin angiotensin system (RAS) is a key contributor to the pathogenesis of essential hypertension. During RAS activation, infiltration of immune cells into the kidney exacerbates hypertension and renal injury. However, the mechanisms underpinning the accumulation of mononuclear cells in the kidney after RAS stimulation remain unclear. C-C motif chemokine 5 (CCL5) drives recruitment of macrophages and T lymphocytes into injured tissues, and we have found that RAS activation induces CCL5 expression in the kidney during the pathogenesis of hypertension and renal fibrosis. We therefore evaluated the contribution of CCL5 to renal damage and fibrosis in hypertensive and normotensive models of RAS stimulation. Surprisingly, during angiotensin II-induced hypertension, CCL5-deficient (knockout, KO) mice exhibited markedly augmented kidney damage, macrophage infiltration, and expression of proinflammatory macrophage cytokines compared with wild-type controls. When subjected to the normotensive unilateral ureteral obstruction model of endogenous RAS activation, CCL5 KO mice similarly developed more severe renal fibrosis and greater accumulation of macrophages in the kidney, congruent with enhanced renal expression of the macrophage chemokine CCL2. In turn, pharmacologic inhibition of CCL2 abrogated the differences between CCL5 KO and wild-type mice in kidney fibrosis and macrophage infiltration after unilateral ureteral obstruction. These data indicate that CCL5 paradoxically limits macrophage accumulation in the injured kidney during RAS activation by constraining the proinflammatory actions of CCL2.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1016/j.ajpath.2016.07.015

Publication Info

Rudemiller, Nathan P, Mehul B Patel, Jian-Dong Zhang, Alexander D Jeffs, Norah S Karlovich, Robert Griffiths, Matthew J Kan, Anne F Buckley, et al. (2016). C-C Motif Chemokine 5 Attenuates Angiotensin II-Dependent Kidney Injury by Limiting Renal Macrophage Infiltration. Am J Pathol, 186(11). pp. 2846–2856. 10.1016/j.ajpath.2016.07.015 Retrieved from https://hdl.handle.net/10161/13061.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Buckley

Anne Frances Buckley

Associate Professor of Pathology

My basic research focus is on neurogenic stem cells and their involvement in brain development and brain tumors. I work in mouse models using inducible in vivo genetic systems, live imaging, and tissue culture, in addition to histological and biochemical methods.
My clinical research interests include neuromuscular diseases. I collaborate with colleagues at Duke on basic and translational research in this area.

Gunn

Michael Dee Gunn

Professor of Medicine

The focus of my work is on understanding how dendritic cells, monocytes, and macrophages regulate immune responses, contribute to specific disease pathologies, and can be manipulated to stimulate or inhibit specific immune responses. We are also using our knowledge of immunology to develop diagnostics and therapeutics for a variety of human diseases. 

Lab History 

The lab started with our discovery of the lymphoid chemokines, which regulate the migration of lymphocytes and dendritic cells to and within secondary lymphoid organs.  We identified the chemokine (CCL21) that mediates the entry of naïve T cells and activated dendritic cells into lymph nodes and the chemokine (CXCL13) that mediates the entry of B cells into lymphoid follicles.  Our focus then shifted to understanding how specific cell types, primarily dendritic cells, and cell migration events regulate immune responses.  We identified murine plasmacytoid dendritic cells; the cell type that causes pulmonary immune pathology during influenza infection; the dendritic cell type that stimulates Th1 immune responses; the cell type that induces neuronal injury in Alzheimer's disease, and the macrophage type that stimulates pulmonary hypertension.  Our current work continues these basic studies while applying our findings to models of human disease. 

Current Research 

Tumor immune therapeutics – We have developed a novel cellular vaccine strategy for the treatment of cancer.  This strategy is much simpler, more cost effective, more clinically feasible, and much more efficacious than classic dendritic cell vaccines.  We are now determining the mechanisms by which this vaccine induces such potent immune responses and advancing it to initial human clinical trials.

Development of recombinant antibodies as diagnostic reagents – Our lab has developed novel methods to generate recombinant single chain antibodies using phage display technology.  We are currently using these methods to generate pathogen-specific antibodies for use in diagnostic tests for a variety of human bacterial, viral, and fungal infections.  In collaboration with Duke Biomedical Engineering, we are deploying our antibodies in a novel diagnostic assay platform to develop point-of-care assays for the diagnosis of a variety of emerging pathogens.  Our recently developed point-of-care assay for Ebola virus displays a sensitivity superior to PCR at a fraction of the per assay cost.

Crowley

Steven Daniel Crowley

Professor of Medicine

Our laboratory explores the contribution of the immune system and inflammatory mediators to the progression of target organ damage in the setting of cardiovascular disease. We are pursuing several related projects in this field:
(1) The actions of type 1 angiotensin receptors on specific immune cell populations in hypertension, target organ damage, and tissue fibrosis.
(2) Cell-specific actions of inflammatory cytokines in regulating blood pressure and end-organ injury.
(3) Mechanism through which dendritic cells regulate renal sodium reabsorption.
(4) The contributions of Wnt O-acylation to kidney scar formation.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.