Multi-objective learning and explanation for stroke risk assessment in Shanxi province.
Date
2022-12
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Stroke is the leading cause of death in China (Zhou et al. in The Lancet, 2019). A dataset from Shanxi Province is analyzed to predict the risk of patients at four states (low/medium/high/attack) and to estimate transition probabilities between various states via a SHAP DeepExplainer. To handle the issues related to an imbalanced sample set, the quadratic interactive deep model (QIDeep) was first proposed by flexible selection and appending of quadratic interactive features. The experimental results showed that the QIDeep model with 3 interactive features achieved the state-of-the-art accuracy 83.33%(95% CI (83.14%; 83.52%)). Blood pressure, physical inactivity, smoking, weight, and total cholesterol are the top five most important features. For the sake of high recall in the attack state, stroke occurrence prediction is considered an auxiliary objective in multi-objective learning. The prediction accuracy was improved, while the recall of the attack state was increased by 17.79% (to 82.06%) compared to QIDeep (from 71.49%) with the same features. The prediction model and analysis tool in this paper provided not only a prediction method but also an attribution explanation of the risk states and transition direction of each patient, a valuable tool for doctors to analyze and diagnose the disease.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Ma, Jing, Yiyang Sun, Junjie Liu, Huaxiong Huang, Xiaoshuang Zhou and Shixin Xu (2022). Multi-objective learning and explanation for stroke risk assessment in Shanxi province. Scientific reports, 12(1). p. 22337. 10.1038/s41598-022-26595-z Retrieved from https://hdl.handle.net/10161/27414.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Shixin Xu
Shixin Xu is an Assistant Professor of Mathematics whose research spans several dynamic and interconnected fields. His primary interests include machine learning and data-driven models for disease prediction, multiscale modeling of complex fluids, neurovascular coupling, homogenization theory, and numerical analysis. His current projects reflect a diverse and impactful portfolio:
- Developing predictive models based on image data to identify hemorrhagic transformation in acute ischemic stroke.
- Conducting electrodynamics modeling of saltatory conduction along myelinated axons to understand nerve impulse transmission.
- Engaging in electrochemical modeling to explore the interactions between electric fields and chemical processes.
- Investigating fluid-structure interactions with mass transport and reactions, crucial for understanding physiological and engineering systems.
These projects demonstrate his commitment to addressing complex problems through interdisciplinary approaches that bridge mathematics with biological and physical sciences.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.