L1 arrest, daf-16/FoxO and nonautonomous control of post-embryonic development.

Loading...

Date

2016-04

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

238
views
234
downloads

Citation Stats

Abstract

Post-embryonic development is governed by nutrient availability. L1 arrest, dauer formation and aging illustrate how starvation, anticipation of starvation and caloric restriction have profound influence on C. elegans development, respectively. Insulin-like signaling through the Forkhead box O transcription factor daf-16/FoxO regulates each of these processes. We recently reported that ins-4, ins-6 and daf-28 promote L1 development from the intestine and chemosensory neurons, similar to their role in dauer development. daf-16 functions cell-nonautonomously in regulation of L1 arrest, dauer development and aging. Discrepancies in daf-16 sites of action have been reported in each context, but the consensus implicates epidermis, intestine and nervous system. We suggest technical limitations of the experimental approach responsible for discrepant results. Steroid hormone signaling through daf-12/NHR is known to function downstream of daf-16 in control of dauer development, but signaling pathways mediating cell-nonautonomous effects of daf-16 in aging and L1 arrest had not been identified. We recently showed that daf-16 promotes L1 arrest by inhibiting daf-12/NHR and dbl-1/TGF-β Sma/Mab signaling, two pathways that promote L1 development in fed larvae. We will review these results on L1 arrest and speculate on why there are so many signals and signaling centers regulating post-embryonic development.

Department

Description

Provenance

Subjects

FoxO, IGF, L1 arrest, L1 diapause, aging, daf-12, daf-16, dauer, dbl-1, insulin

Citation

Published Version (Please cite this version)

10.1080/21624054.2016.1175196

Publication Info

Kaplan, Rebecca EW, and L Ryan Baugh (2016). L1 arrest, daf-16/FoxO and nonautonomous control of post-embryonic development. Worm, 5(2). p. e1175196. 10.1080/21624054.2016.1175196 Retrieved from https://hdl.handle.net/10161/13271.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Baugh

L. Ryan Baugh

Professor of Biology

The Baugh Lab is interested in phenotypic plasticity and developmental robustness despite variable environmental conditions. We use the roundworm C. elegans to study how animals adapt to starvation over different time scales using functional genomics (bulk and single-cell) as well as statistical, quantitative, and molecular genetics. Our research questions revolve around how gene regulation and development are governed by nutrient availability, how animals acclimate to survive starvation, and the mechanisms underlying adult consequences of early life starvation. We are gaining insight into the genetic basis of natural variation among wild strains, the function of conserved tumor suppressors, epigenetic effects of starvation, and how early life experience affects adult disease. 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.