L1 arrest, daf-16/FoxO and nonautonomous control of post-embryonic development.
Date
2016-04
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Post-embryonic development is governed by nutrient availability. L1 arrest, dauer formation and aging illustrate how starvation, anticipation of starvation and caloric restriction have profound influence on C. elegans development, respectively. Insulin-like signaling through the Forkhead box O transcription factor daf-16/FoxO regulates each of these processes. We recently reported that ins-4, ins-6 and daf-28 promote L1 development from the intestine and chemosensory neurons, similar to their role in dauer development. daf-16 functions cell-nonautonomously in regulation of L1 arrest, dauer development and aging. Discrepancies in daf-16 sites of action have been reported in each context, but the consensus implicates epidermis, intestine and nervous system. We suggest technical limitations of the experimental approach responsible for discrepant results. Steroid hormone signaling through daf-12/NHR is known to function downstream of daf-16 in control of dauer development, but signaling pathways mediating cell-nonautonomous effects of daf-16 in aging and L1 arrest had not been identified. We recently showed that daf-16 promotes L1 arrest by inhibiting daf-12/NHR and dbl-1/TGF-β Sma/Mab signaling, two pathways that promote L1 development in fed larvae. We will review these results on L1 arrest and speculate on why there are so many signals and signaling centers regulating post-embryonic development.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Kaplan, Rebecca EW, and L Ryan Baugh (2016). L1 arrest, daf-16/FoxO and nonautonomous control of post-embryonic development. Worm, 5(2). p. e1175196. 10.1080/21624054.2016.1175196 Retrieved from https://hdl.handle.net/10161/13271.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
L. Ryan Baugh
The Baugh Lab is interested in phenotypic plasticity and adaptation to starvation. We use the roundworm C. elegans for an integrative organismal approach that considers molecular mechanisms in a developmental and ecological context. We are studying how development is governed by nutrient availability, how animals survive starvation, long-term consequences of early life starvation, and multigenerational plasticity.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.