Characterization of methane-seep communities in a deep-sea area designated for oil and natural gas exploitation off Trinidad and Tobago

Loading...
Thumbnail Image

Date

2017-10-30

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

65
views
45
downloads

Citation Stats

Abstract

© 2017 Amon, Gobin, Van Dover, Levin, Marsh and Raineault. Exploration of the deep ocean (>200 m) is taking on added importance as human development encroaches. Despite increasing oil and natural gas exploration and exploitation, the deep ocean of Trinidad and Tobago is almost entirely unknown. The only scientific team to image the deep seafloor within the Trinidad and Tobago Exclusive Economic Zone was from IFREMER in the 1980s. That exploration led to the discovery of the El Pilar methane seeps and associated chemosynthetic communities on the accretionary prism to the east of Trinidad and Tobago. In 2014, the E/V Nautilus, in collaboration with local scientists, visited two previously sampled as well as two unexplored areas of the El Pilar site between 998 and 1,629 m depth using remotely operated vehicles. Eighty-three megafaunal morphospecies from extensive chemosynthetic communities surrounding active methane seepage were observed at four sites. These communities were dominated by megafaunal invertebrates including mussels (Bathymodiolus childressi), shrimp (Alvinocaris cf. muricola), Lamellibrachia sp. 2 tubeworms, and Pachycara caribbaeum. Adjacent to areas of active seepage was an ecotone of suspension feeders including Haplosclerida sponges, stylasterids and Neovermilia serpulids on authigenic carbonates. Beyond this were large Bathymodiolus shell middens. Finally there was either a zone of sparse octocorals and other non-chemosynthetic species likely benefiting from the carbonate substratum and enriched production within the seep habitat, or sedimented inactive areas. This paper highlights these ecologically significant areas and increases the knowledge of the biodiversity of the Trinidad and Tobago deep ocean. Because methane seepage and chemosynthetic communities are related to the presence of extractable oil and gas resources, development of best practices for the conservation of biodiversity in Trinidad and Tobago waters within the context of energy extraction is critical. Potential impacts on benthic communities during oil and gas activities will likely be long lasting and include physical disturbance during drilling among others. Recommendations for the stewardship of these widespread habitats include: (1) seeking international cooperation; (2) holding wider stakeholder discussions; (3) adopting stringent environmental regulations; and (4) increasing deep-sea research to gather crucial baseline data in order to conduct appropriate marine spatial planning with the creation of marine protected areas.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.3389/fmars.2017.00342

Publication Info

Amon, DJ, J Gobin, CL Van Dover, LA Levin, L Marsh and NA Raineault (2017). Characterization of methane-seep communities in a deep-sea area designated for oil and natural gas exploitation off Trinidad and Tobago. Frontiers in Marine Science, 4(OCT). 10.3389/fmars.2017.00342 Retrieved from https://hdl.handle.net/10161/19262.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Van Dover

Cindy Van Dover

Harvey W. Smith Distinguished Professor Emeritus of Biological Oceanography in the Division of Earth and Ocean Sciences

Dr. Cindy Lee Van Dover is a deep-sea biologist with an interest in ocean exploration and the ecology of chemosynthetic ecosystems. She began her work in this field in 1982, joining the first biological expedition to hydrothermal vents on the East Pacific Rise. After earning a Master's degree in ecology from UCLA in 1985, she continued her graduate education in the MIT/Woods Hole Oceanographic Institution Joint Program in Biological Oceanography. There she joined numerous expeditions and published on diverse topics such as reproductive strategies and recruitment of vent invertebrates, vent food webs, and taxonomic descriptions of new species. In 1989, she described a novel photoreceptor in a vent invertebrate, which in turn led to discovery and characterization of a geothermal source of light at vents and investigations of its biological significance. On receiving her Ph.D. in 1989, Van Dover joined the group that operates the deep-diving submersible ALVIN. She qualified as pilot in 1990 and was pilot-in-command of 48 dives. Her work with ALVIN and other deep-submergence assets has taken her to nearly all of the known vent fields in the Atlantic and Pacific, as well as to deep-water seamounts, seeps, and other significant seafloor features. Her current research focuses primarily on the study of biodiversity, biogeography, and connectivity of invertebrates from chemosynthetic ecosystems and invertebrate functional anatomy.  in addition, she is active in developing pre-industrialization policy and management strategies for deep-sea resources. She has published more than 80 articles in peer-reviewed journals and is an active participant and Chief Scientist in NSF-and NOAA-sponsored field programs to deep-sea environments. 
In addition to research, Van Dover has authored a popular book for the lay audience about the deep sea and her experiences as an ALVIN pilot (Deep-Ocean Journeys; Addison-Wesley, 1997, a.k.a. The Octopus's Garden). She is also the author of the first textbook on hydrothermal vents (The Ecology of Deep-Sea Hydrothermal Vents; Princeton University Press, 2000). Van Dover is curator of Beyond the Edge of the Sea, a traveling exhibition of illustrations of deep-sea organisms and environments by artist Karen Jacobsen (http://oceanography.ml.duke.edu/discovery/) and is currently project lead for Science and Art at the Moment of Discovery, hosting 6 artists (water color, acrylic, experimental media, batik) on a deep-sea research expedition in June 2012.  Her work has been featured in Science News, Discover Magazine, The New York Times, and National Public Radio. Dr. Van Dover was named Virginia Outstanding Scientist in 2006 and is a Fulbright Scholar (France 2004), Fellow of the American Association for the Advancement of Science, and Distinguished Lecturer for the NSF Ridge 2000 Program. She is the inaugural recipient of the Mines Medal for exceptional leadership and innovation, a George Hammell Cook Distinguished Alumni Award (Cook College, Rutgers University), a Career Awardee from the National Science Foundation, and a William & Mary Alumni Fellowship Awardee for Outstanding Teaching. She is currently the Harvey W Smith Distinguished Professor of Biological Oceanography at Duke University, Chair of the Division of Marine Science and Conservation, and Director of the Duke University Marine Laboratory in Beaufort, N.C.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.