The role of the thalamus in motor control.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats



Two characteristics of the thalamus--its apparently simple relay function and its daunting multinuclear structure--have been customarily viewed as good reasons to study something else. Yet, now that many other brain regions have been explored and neurophysiologists are turning to questions of how larger circuits operate, these two characteristics are starting to seem more attractive. First, the relay nature of thalamic neurons means that recording from them, like tapping into a wire, can reveal the signals carried by specific circuits. Second, the concentration of like relay neurons into nuclei means that inactivating or stimulating them can efficiently test the functions of the circuits. Recent studies implementing these principles have revealed pathways through the thalamus that contribute to generating movements and to monitoring one's own actions (corollary discharge).







Marc A. Sommer

Professor of Biomedical Engineering

We study circuits for cognition. Using a combination of neurophysiology and biomedical engineering, we focus on the interaction between brain areas during visual perception, decision-making, and motor planning. Specific projects include the role of frontal cortex in metacognition, the role of cerebellar-frontal circuits in action timing, the neural basis of "good enough" decision-making (satisficing), and the neural mechanisms of transcranial magnetic stimulation (TMS).

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.