Monitoring the SNS basement neutron background with the MARS detector

Loading...

Date

2021-12-05

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

19
views
42
downloads

Attention Stats

Abstract

We present the analysis and results of the first dataset collected with the MARS neutron detector deployed at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) for the purpose of monitoring and characterizing the beam-related neutron (BRN) background for the COHERENT collaboration. MARS was positioned next to the COH-CsI coherent elastic neutrino-nucleus scattering detector in the SNS basement corridor. This is the basement location of closest proximity to the SNS target and thus, of highest neutrino flux, but it is also well shielded from the BRN flux by infill concrete and gravel. These data show the detector registered roughly one BRN per day. Using MARS' measured detection efficiency, the incoming BRN flux is estimated to be $1.20~\pm~0.56~\text{neutrons}/\text{m}^2/\text{MWh}$ for neutron energies above $\sim3.5$ MeV and up to a few tens of MeV. We compare our results with previous BRN measurements in the SNS basement corridor reported by other neutron detectors.

Department

Description

Provenance

Subjects

physics.ins-det, physics.ins-det, hep-ex

Citation

Scholars@Duke

Barbeau

Phillip S. Barbeau

Professor of Physics

Professor Barbeau’s research interests are predominantly in the fields of neutrino and astroparticle physics. His efforts are focused on (but not limited to) three major areas of research: studying the physics of coherent neutrino-nucleus scattering; novel searches for the dark matter in our universe; and searches for zero neutrino double beta decay. The unifying aspect of the work is the common need for new and creative detector development in order to solve some of the “hard” problems in low-background rare-event detection.

Scholberg

Kate Scholberg

Arts & Sciences Distinguished Professor of Physics

Prof. Scholberg's broad research interests include experimental elementary particle physics, astrophysics and cosmology. Her main specific interests are in neutrino physics. She has long-term involvement in Super-Kamiokande in Japan and the T2K ("Tokai to Kamioka") high-intensity beam experiment that sends neutrinos 300 km from an accelerator at the J-PARC facility in Japan to Super-K. She is a member of DUNE (Deep Underground Neutrino Experiment), the next-generation U.S.-based international experiment designed to observe neutrinos beamed from Fermilab to a large liquid argon detector at an underground facility in South Dakota. One of Prof. Scholberg's particular interests on DUNE is the detector's sensitivity to the huge bursts of neutrinos from core-collapse supernovae.

Prof. Scholberg serves as spokesperson of COHERENT, a multi-detector experiment with the primary physics goal of measuring CEvNS (Coherent Elastic Neutrino Nucleus Scattering) using the high-quality, high-intensity neutrinos produced by the Spallation Neutron Source at Oak Ridge National Laboratory in Tennessee. CEvNS is the interaction of a neutrino with an entire nucleus, resulting in a very tiny nuclear recoil. CEvNS was measured for the first time by the collaboration in 2017. COHERENT is currently engaged in multiple measurements of CEvNS on different nuclear targets, as well as a broad program of neutrino interaction measurements and beyond-the-standard-model physics searches.

Prof. Scholberg was a co-founder of SNEWS, the SuperNova Early Warning System, an inter-experiment collaboration of detectors with Galactic supernova sensitivity. Neutrinos from a core collapse will precede the photon signal by hours; therefore coincident observation of a burst in several neutrino detectors will be a robust early warning of a visible supernova. The goals of SNEWS are to provide the astronomical community with a prompt alert of a Galactic core collapse, as well as to optimize global sensitivity to supernova neutrino physics.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.