Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis.

Abstract

Focal segmental glomerulosclerosis (FSGS) is a histological lesion with many causes, including inherited genetic defects, with significant proteinuria being the predominant clinical finding at presentation. Mutations in COL4A3 and COL4A4 are known to cause Alport syndrome (AS), thin basement membrane nephropathy, and to result in pathognomonic glomerular basement membrane (GBM) findings. Secondary FSGS is known to develop in classic AS at later stages of the disease. Here, we present seven families with rare or novel variants in COL4A3 or COL4A4 (six with single and one with two heterozygous variants) from a cohort of 70 families with a diagnosis of hereditary FSGS. The predominant clinical finding at diagnosis was proteinuria associated with hematuria. In all seven families, there were individuals with nephrotic-range proteinuria with histologic features of FSGS by light microscopy. In one family, electron microscopy showed thin GBM, but four other families had variable findings inconsistent with classical Alport nephritis. There was no recurrence of disease after kidney transplantation. Families with COL4A3 and COL4A4 variants that segregated with disease represent 10% of our cohort. Thus, COL4A3 and COL4A4 variants should be considered in the interpretation of next-generation sequencing data from such patients. Furthermore, this study illustrates the power of molecular genetic diagnostics in the clarification of renal phenotypes.

Department

Description

Provenance

Subjects

Adolescent, Adult, Autoantigens, Child, Collagen Type IV, DNA Mutational Analysis, Exome, Female, Genetic Testing, Genotype, Glomerular Basement Membrane, Glomerulosclerosis, Focal Segmental, Hearing Loss, Hematuria, Humans, Male, Middle Aged, Mutation, Missense, Phenotype, Podocytes, Proteinuria, Young Adult

Citation

Published Version (Please cite this version)

10.1038/ki.2014.305

Publication Info

Malone, Andrew F, Paul J Phelan, Gentzon Hall, Umran Cetincelik, Alison Homstad, Andrea S Alonso, Ruiji Jiang, Thomas B Lindsey, et al. (2014). Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int, 86(6). pp. 1253–1259. 10.1038/ki.2014.305 Retrieved from https://hdl.handle.net/10161/11616.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Sparks

Matthew A. Sparks

Associate Professor of Medicine

Nephrology Fellowship Program & Medical Education Leadership

I serve as the Program Director for the Nephrology Fellowship Program, where my primary goal is to support each fellow in building a successful and fulfilling career—whether in clinical practice, research, education, or advocacy. I am also the lead for the Society for Early Education Scholars (SEEDS) within the Department of Medicine. SEEDS is a year-long, mentored education program designed for fellows pursuing careers as clinician educators or education scholars.

My passion lies in advancing medical education, particularly in nephrology. I am the co-founder and advisory board member of the AJKD Blog, the first nephrology blog affiliated with a major journal—the American Journal of Kidney Diseases. I co-created NephMadness, a widely recognized and innovative educational initiative. I previously served as deputy editor of the Renal Fellow Network, where I remain actively involved as faculty lead.

I am also a member of the Board of Directors of NephJC, a nonprofit organization that champions free, open-access medical education in nephrology. Nationally, I serve on the Nephrology Board of the American Board of Internal Medicine, past chair of the Scientific and Clinical Education Lifelong Learning Committee of the American Heart Association’s Kidney in Cardiovascular Disease Council, and am a Fellow of the American Society of Nephrology (ASN), American Heart Association (AHA), and National Kidney Foundation (NKF). I serve as advisory board member and associate director of NephSIM Nephrons virtual mentorship program for trainees interested in nephrology. 

Additionally, I serve as the Director of Communication for the ASN Portfolio of Journals, including JASN, CJASN, and Kidney360.

Past Research

  • Hypertension and Kidney Hemodynamics: My past research delved into the mechanisms of blood pressure regulation, focusing on the renin-angiotensin system and prostanoid pathways. Utilizing genetically modified mouse models, you investigate how alterations in renal microcirculation influence sodium excretion and blood pressure, aiming to identify novel therapeutic targets for hypertension.

  • SGLT2 Inhibitors and Kidney Disease: I have contributed to understanding the pathophysiology of kidney diseases and the mechanisms of action of SGLT2 inhibitors, highlighting their role in managing chronic kidney disease and associated cardiovascular risk.

Clinical Expertise
  • My clinical interests are glomerular diseases- particularly IgA nephropathy, membranous nephropathy, C3 glomerulopathy, and lupus nephritis.

  • I also have expertise in genetic kidney diseases, ADPKD, quality improvement in outpatient nephrology, and CKRT in the ICU.

  • I serve as the director of the Duke Nephrology Fellow Clinic

Awards and Honors

  • Excellence in Education Award, Duke Department of Medicine, 2016
  • Young Physician-Scientist Award, American Society for Clinical Investigation (ASCI), 2017
  • Midcareer Distinguished Educator Award, American Society of Nephrology (ASN), 2022

Listen to my podcasts:

Connect with me on BlueSky: @NephroSparks

Smith

Stephen Richard Smith

Professor of Medicine

Ongoing work focuses on problems of immediate clinical relevance in renal and pancreas transplantation, including issues related to immunosuppression, infection, and cardiovascular events as well as hypertension.

Research methodologies employed include randomized clinical trials, cohort studies, and retrospective multivariable analyses based on the transplant database. 

Howell

David Noble Howell

Professor of Pathology

A major focus of both my clinical practice and investigative work is the diagnosis and treatment of disorders affecting solid-organ transplant recipients, particularly infectious complications. For the past 15 years, I have served as the primary pathologist for one of the largest lung transplant programs in the world; in the process contributing to over 20 peer-reviewed publications on complications of lung transplantation, including infections, gastroesophageal reflux, tumors, and antibody-mediated rejection; and writing a major book chapter on the subject (Howell DN and Palmer SM, Pathology of the Lung Transplant. 2006. In: Lynch JP, Ross D, eds. Lung and Heart-Lung Transplantation. Marcel Dekker, Inc., New York, pp. 683-722). I have also been the primary pathologist for Duke's renal and liver transplant programs, authoring or co-authoring a wide variety of journal articles and a book chapter in these areas (e.g., Plumb et al., Transplantation 2006;82:1224-1224; Snyder et al., Am. J. Respir. Crit. Care Med. 2010;181:1391-1396).

A second major area of interest is the pathogenesis of renal glomerular diseases. In collaboration with members of the Division of Nephrology at Duke, I have helped assemble and characterize a large registry of patients with familial focal segmental glomerulosclerosis (FFSGS)(Conlon et al., Kidney Int. 1999;56:1863-1871). Analysis of one of the families in this registry led to the discovery at Duke, in the laboratory of Dr. Michelle Winn, of mutations in the TRPC6 cation channel as a cause of FFSGS (Winn et al., Genomics 1999;58:113-120; Winn et al., Science 2005;308:1801-1804). We are continuing to collect data on additional families with focal segmental glomerulosclerosis. In addition, I have served as principle consultative pathologist for several investigators working in animal models of renal disease and transplantation (e.g., Crowley et al., Hypertension 2010;55:99-108).

Finally, I have devoted considerable time and energy to applications of correlative microscopy to diagnostic pathology, with particular emphasis electron microscopy. I am currently President of the Society for Ultrastructural Pathology, an international organization that promotes the use of ultrastructural examination in both diagnostic pathology and clinical and basic research. Much of my published work in this area involves the role of electron microscopy in the diagnosis of renal diseases (e.g., Howell et al., Ultrastruct. Pathol. 2003;17:295-312; Pavlisko and Howell, Ultrastruct. Pathol., in press), but I have also written extensively, with my colleague Dr. Sara Miller, on the ultrastructural diagnosis of infectious disorders, contributing, among other things, to the first description of a new polyomavirus-induced skin disorder, trichodysplasia spinulosa (Haycox et al., J. Investig. Dermatol. Symp. Proc. 1999;4:268-271).

Gbadegesin

Rasheed Adebayo Gbadegesin

Wilburt C. Davison Distinguished Professor

Molecular genetics of glomerular disease
Genetic risk factors for childhood onset idiopathic nephrotic syndrome


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.